
Writing a Microservice in
the Go Programming

Language
by Glenn Engstrand

The Go programming language was designed mostly by some ex 
Bell Labs gurus who originally worked on Unix and worked for 
Google when Go was designed in 2007 and first released to the 
public in 2012. Since then, its popularity has steadily increased. 
It is known mostly as the programming language for 
infrastructure related systems such as Docker, Kubernetes, and 
Prometheus. What I wanted to learn was how effective Go was at
writing business focused microservice based applications.

I have this github repo where I 
implement the same feature 
identical, polyglot persistent 
news feed microservice in 
different programming 
languages. I run each 
microservice on the same test 
lab then capture and analyze 
the performance results in order
to form a basis for comparison 
between these various 
programming languages.

I wanted to see how Go 
compared to the other 
popular programming 
languages whose news feed 
microservces have been 
implemented previously 
including Dropwizard on 
Java, Spring Boot on Java, 
Node on Javascript, Flask on 
Python, Finatra on Scala, 
Scalatra on Scala, and Ring 
on Clojure.

Copyright © 2019 Glenn Engstrand p. 1 of 10 pp.



Architecture and Design

The architecture for the Go 
version of the news feed 
microservice is the same as 
all the other versions. The 
mysql database is used to 
store participant and friend 
relationship information. 
The redis database is used 
as a cache that fronts read 
access to mysql. Cassandra 
is used to store both 
inbound and outbound news
posts. Elasticsearch is used 
both for keyword based 
searching of news posts and
to capture performance 
related data.

Like almost all of the 
implementations for the news 
feed microservice, I started from 
swagger codegen templates. The 
go-server templates use an open 
source project called mux as the 
request router. I used the 
officially sanctioned client 
libraries for mysql, redis, and 
cassandra. I had to use a more 
obscure client library for 
elasticsearch because the official 
one doesn't support the version 
of elasticsearch that I use. I 
ended up having to implement 
my own connection pool for that 
using Go’s built in sync package.

Copyright © 2019 Glenn Engstrand p. 2 of 10 pp.



The design of the microservice is heavily influenced by the 
design of the programming language. Take one look at the bios 
of Go's inventors and you will quickly understand why the Go 
programming language is considered to be "a better C."

There are many improvements
to Go over the C programming
language. For those who like 
to approach concurrency via 
the CSP model, goroutines and
channels are a very simple, yet
effective, language feature. Go
does have pointers but not 
pointer arithmetic. Slices let 
you do everything that you 
originally did with pointer 
arithmetic but without the 
need for unsafe operations. 
There is a rudimentary type 
inference system that allows 
you to have short variable 
declarations. The defer 
keyword before a statement 
means that statement won't 
get executed until control is 
returned from the current 
function. Functions can return 
multiple results. Both defer 
and multiple results become 
very important as you shall see
in about four paragraphs from 
here.

There are also some quite 
significant features, that you 
find in other popular 
programming languages, 
missing in Go. I suspect that 
these omissions are deliberate 
so you should not expect them 
to be added later.

Copyright © 2019 Glenn Engstrand p. 3 of 10 pp.



Go does not support Object 
Oriented Programming. Go has 
structs with fields. Functions 
can have structs as receivers. 
This can make structs kind of 
look like objects. What is 
missing is inheritance, 
encapsulation, and 
polymorphism. Go interfaces 
kind of look like polymorphism 
but it uses duck typing. Duck 
typing in a statically compiled 
language. Imagine that.

Go's approach to Functional 
Programming is similar in its 
approach to Object Oriented 
Programming. Provide some 
limited support but not enough 
for a proper solution.

Function closures afford the lambda calculus but there is no 
support for monads in the Go programming language itself. You 
can kind of fake it by writing all of these map functions that 
apply a function closure inside a for loop over a range of slice. If 
you go that approach, then you are going to be writing a lot of 
code that you will wish was just being handled in Go.

Go does not have exceptions. No try and no catch. There is a 
panic and recover but that results in the process terminating. 
This is where defer and multiple results comes into play. With 
multiple results, each function can return both the success result
and the error result. The code that makes a call to a function 

Copyright © 2019 Glenn Engstrand p. 4 of 10 pp.



then tests if the error result is not nil. With defer, you can return 
prematurely in those error checks without writing a lot of 
complicated logic to determine which connections should be 
closed or struct values returned to their respective pools.

The last missing feature that I want to
cover here is the lack of a method 
intercepting dynamic proxy. Why do 
you care? Because a dynamic proxy is 
very useful when writing unit tests. 
The key to writing unit tests is that 
each test covers only the unit of code 
that it is expected to vet. That means 
mocking out dependencies to external
data stores or services. That mocking 
is easy to accomplish with a dynamic 
proxy capability. Since Go doesn't 
have a dynamic proxy, you have to 
compensate by wrapping all calls to 
the affected client libraries with a 
mixture of structs and interfaces. I 
had to add 8 structs (4 in the service 
and 4 in the unit test that mock the 4 
in the service) and 4 interfaces to the 
Go version of the news feed 
implementation just to write a unit 
test for adding a news feed item. 

Why write unit tests 
when Kubernetes 
makes it easy to write 
end-to-end tests where 
you are exercising all 
of the code? Even with 
the advent of CI / CD 
where you can 
automatically spin up 
pods in Kubernetes and
run test automation 
against those pods, it is
still important to write 
unit tests. Why is that? 
Because the faster you 
find and fix bugs, the 
quicker you can deliver
quality software. You 
don't need to spin up 
any pods for unit tests 
so that is the fastest 
way to find bugs. 

Copyright © 2019 Glenn Engstrand p. 5 of 10 pp.

The features of the programming language exert a subtle 
yet powerful influence on the natural way that code is 
organized in files.



Here is a CPU profile of the service for one minute during the load 
test. As you can see, there is no apparent bottle neck. Most of the 
time was spent waiting on IO which, for a service like this, is 
appropriate. I used the net/http/pprof package to generate this 
profile which requires a small change to the service itself that is not 
in the github repo.

Copyright © 2019 Glenn Engstrand p. 6 of 10 pp.



Code Complexity
One basis for comparing different programming languages is to 
measure the complexity of feature identical programs written in 
those languages. 

One simple metric that can be
used across different 
languages is average per file 
Lines of Code (LoC). Many 
will argue that LoC really 
doesn't accurately reflect on 
complexity. I will agree that 
there is no mathematical 
proof here but I will say this 
in defense of using LoC. The 
best way for a developer to 
maintain quality is to 
understand the code before 
enhancing it. When a 
developer opens a file to 
change the code within, the 
developer is more likely to 
give up trying to understand 
the already existing code in 
the file if there is a lot of it.

You might be tempted to 
mandate a maximum LoC size for
files but that doesn't work either.
Files are a way of organizing 
code such that it can be easily 
found later. The organizing 
principle has to make sense to 
the developer in order for them 
to be able to effectively make use
of it for that purpose. Enforcing a
max file size does not help here 
because developers will end up 
with a lot of artificial 
abstractions in their code that 
doesn't make sense in the larger 
context of the problem domain. 
Less intelligible code will not 
help developers improve their 
understanding of it.

The features of the programming language exert a subtle yet 
powerful influence on the natural way that code is organized in 
files.

Copyright © 2019 Glenn Engstrand p. 7 of 10 pp.

Why write unit tests when Kubernetes makes it easy to write 
end-to-end tests where you are exercising all of the code?



Where does Go stand when 
compared to the other news 
feed microservices in terms 
of average per file LoC? 
Closer to the largest files. 
Go files had fewer LoC (on 
average) than the Finatra 
based Scala microservice 
and the DropWizard based 
Java microservice. The Go 
files were larger than those 
in Clojure, Spring Boot 
based Java, Python, Node.js, 
and Scalatra based Scala.

Why is there so much Go code? Remember that Go doesn't 
support exceptions. That lack of exceptions means that you have 
to check for errors with every function call you make.

Another way to measure code complexity is to use the cyclomatic
complexity formula as developed by Thomas McCabe in 1976. 
Loosely, the metric reflects on the number of different control 
flow paths that are possible within the program. There are two 
main issues with using cyclomatic complexity as a basis for 
comparison. Cyclomatic complexity does not strongly correlate 
with code readability. There is no single tool that can be used for
all of these different programming languages and how that 
number gets computed is different for every tool. According to 
this metric, Go had the lowest complexity; however, the tool that 
I used to calculate that metric was very naive in its 
implementation of the formula. It calculated the complexity 
based on the assumption that there is only one entrance and one
exit to each method. That assumption was incorrect for this 
code.

Copyright © 2019 Glenn Engstrand p. 8 of 10 pp.



Performance Under Load

I tested this microservice the same way that I tested all of the 
other microservices, using the standard load test environment 
for two hours. I like to compare performance for the outbound 
post operation because it does a lot. Each call to that API fetches
the poster’s friends, creates inbound entries for each friend, 
creates the outbound entry for the poster, and finally creates a 
searchable document of the news feed item in elasticsearch. The
average per minute throughput of outbound posts was 18,425 
with an average duration of 5 ms, a median of 4 ms, and a 99th 
percentile of 29 ms.

In terms of throughput, the Go 
version of the news feed 
microservice performed worse 
than Dropwizard Java and better 
than the Spring Boot Java, 
Node.js, Python, Scala, and 
Clojure versions.

In terms of latency, the Go version of 
the news feed microservice 
performed worse than both the 
Dropwizard and the Spring Boot Java 
versions but it performed better than 
the Node.js, Python, Scala, and 
Clojure versions.

Copyright © 2019 Glenn Engstrand p. 9 of 10 pp.



Conclusion

The Go programming 
language is very popular with
infrastructure based systems 
development and is starting 
to gain the attention of 
application developers. Its 
designers eschew almost all 
modern programming 
language features claiming 
that is how Go programs 
perform so well with a lot less
complexity.

My own findings were very 
different. While the simplicity 
of the language itself yielded a 
much shorter learning time, 
that simplicity did not translate
to less complex microservices. 
With regards to performance, 
Go did quite well but was a 
close second to Dropwizard 
Java which has all the modern 
language features missing in 
Go.

Copyright © 2019 Glenn Engstrand p. 10 of 10 pp.


