
Dropwizard
vs

Spring Boot
by Glenn Engstrand

There is a growing trend in
Java to hide complexity with

annotation based design
patterns.

If you are planning on
writing some microservices
in Java, then you are most
probably wondering whether
to use Dropwizard or Spring
Boot. If so, then this blog is
for you. Although the title
says Spring Boot, what I am
really evaluating here is
version 5 of the Spring
Framework which includes
Boot, Web, Core, Data, and
Test. Whenever I evaluate a
technology stack, I write a
news feed microservice in
that technology then
compare that to feature
identical microservices
written in other technology
stacks. Today, I will be
comparing the news feed
microservices written in
Spring Boot vs Dropwizard.

According to Google Trends,
those two technologies were
equal in popularity back
when Spring Boot was first
released in 2014. Since then,
interest in Dropwizard has
remained the same while
Spring Boot interest has
steadily increased. Perhaps
this is because the Spring
Framework is backed by
Pivotal Software which
(according to the S-1 that
they filed prior to their April
2018 IPO) spent $221
million in sales and
marketing in the previous
year. The Dropwizard project
is maintained by individual
contributors with no
marketing budget; however,
they do get some
sponsorship from Jetbrains. I
remember attending various
tech conferences over the
years and seeing the
occasional presentation for
Spring Boot on the schedule
but never for Dropwizard.

Copyright © 2019 Glenn Engstrand p. 2 of 7 pp

feed 8 (Spring Boot) class

libraries and their

dependencies

Architecture

Since both technologies are for
writing servlet container based
microservices in Java, the
architecture is very similar.
Both microservices access
MySql, Redis, Cassandra, and
Elasticsearch since that is part
of the functional requirements.
I am a big believer in Model
Driven Software Development
and Swagger is a very popular
technology for generating
microservice boilerplate code
with MDSD. I started using
Swagger with the Dropwizard
implementation and have
continued to use it including
the Spring Boot
implementation.

It makes a lot of sense to
develop microservices in
such a way as to deploy and
test them while they are
running in a Kubernetes
cluster. For the actual load
tests, I do use the cloud
managed solutions from
either Amazon or Google. I
use minikube when
developing and testing each
microservice on my laptop.
As a minimum requirement
for adoption, each candidate
technology has to be able to
function in those
environments.

An important part of evaluating any new microservice
technology is to investigate how it performs under load and
that means having the capability to measure its performance.
I used to use Kafka to capture performance data but it is not
easy to deploy Kafka on Kubernetes (although it is getting
easier). Since then, I have switched over to measuring
performance with an API gateway approach. The load test
application makes its calls to the microservice through a full
reverse proxy that also makes asynchronous calls to another
service with the performance data for the call to the
microservice under evaluation. That second service batches
up the performance data then periodically updates
Elasticsearch with that data in a format that is easy for
Kibana to analyze and present.

Copyright © 2019 Glenn Engstrand p. 3 of 7 pp

Design

Ever since Kong has pivoted from API
gateway to service mesh, it has

underperformed in terms of throughput.

Originally, I used Kong as the
API gateway. It used to do a
great job at that but started
underperforming once version
1 was released. I can only
speculate as to why. Kong has
recently pivoted to becoming a
service mesh for Kubernetes.
Perhaps it has lost focus on its
original purpose of being an
API gateway?

I had to replace Kong with
a service that is a drop in
replacement to how Kong
was being used here. I
ended up coding a 100 line
custom proxy in golang.
The Go programming
language feels like a better,
more modern C and it has
lots of great support for
highly concurrent HTTP
servers and clients.

Since both projects are started
using similar Swagger
templates and since both
technology stacks are similar
in architecture, it only stands
to reason that there would be
a lot of similarities in the
design of both microservices.
They are both organized into
resources, services, and data
access. Resource classes
surface the API calls. Services
are responsible for the
business rules and for
aggregating and caching data.
Data Access Objects are used
to access the underlying data
bases. Both Dropwizard and
Spring Boot use annotated
interfaces where method
intercepting proxies delegate
functionality based on
metadata.

The Spring Boot service uses
Spring DI which is included
in Core. Spring is a little
more opinionated than Guice
in that it defaults to using
the singleton pattern and
supports the notion of
component scans. Instead of
a component scan, Guice
depends on a module system
where interfaces are
explicitly bound to
implementations during the
configuration phase at time
of system start. The
Dropwizard framework is
hard coded to use Jetty as
the servlet container
whereas Spring uses that
component scan in order to
figure out which servlet
container to run under. It
supports Tomcat, Jetty, and
Undertow. When load testing
the Spring Boot service, I
used Jetty in order for it to
be more comparable to the
Dropwizard service. I also
ran the load test with the
Spring Boot service
configured to use Tomcat
and the difference in
performance was negligible.

There are plenty of differences
too. While Dropwizard services
can use Spring DI, this
Dropwizard service uses
Google Guice for Dependency
Injection.

Copyright © 2019 Glenn Engstrand p. 4 of 7 pp

Spring Boot

The most profound difference is in
how the two technologies handle
data access. Java applications tend
to have a lot of plumbing code
around data access, particularly
with relational databases due to
their stateful connections and due to
the impedance mismatch between
relational data and object
orientation. Dropwizard addresses
this with its own datasource factory
and by incorporating another open
source project called JDBI.
Dropwizard db manages the pooling
of JDBC connections. JDBI provides
a relatively lightweight mapping
between relational datasets and
objects.

With non-relational databases, you are on your own and will
most probably just use whatever libraries are available for
Java.

Spring data takes a more heavyweight approach by providing
repositories for both relational and non-relational databases.
The repository for MySql calls JPA (Java Persistence API)
using Hibernate as the implementation. I used the
repositories for all of the underlying databases except for
Elasticsearch because, at the time of this evaluation, the
Spring Data repository for Elasticsearch depends on the
native transport client instead of the high level REST client.
The native transport client requires that you use a recent
version of Elasticsearch which is too memory intensive to run
on minikube (my laptop has only 6 GB RAM of which only 4 is
available to run 9 pods).

The Elasticsearch
folks recommend
the high level
REST client
anyway and will
soon deprecate
the native
transport client.

Copyright © 2019 Glenn Engstrand p. 5 of 7 pp

Unit Tests

Code Size

Lightweight (Dropwizard)
apps load faster and are

easier to debug than
heavyweight (Spring Boot)

apps.

There is an ongoing debate on
how much code coverage that
unit tests should strive for.
Some believe that unit tests
should just focus on covering
services with mocked DAOs
and let functional tests cover
the rest. Others believe that
unit tests should cover
resource classes too.
Dropwizard provides support
for those who are in the latter
camp. I side with the former
so I didn’t use the Dropwizard
testing module. Spring test
allows you to easily inject
mocked dependencies via
annotation with its test
configuration annotation.

It takes a lot of LoC (Lines of
Code) to do almost anything
in Java. How does this
Dropwizard service compare
against the Spring
Framework service in terms
of the size of each project
respectively? At the time of
this evaluation, the
Dropwizard microservice is
composed of 35 classes with a
total of 3,266 LoC. The
largest class is the Redis
class (most probably because
of the Hystrix integration)
with 233 LoC. The Spring
Boot microservice is
composed of 41 classes with a
total of 2,296 LoC. The
largest class is a Swagger
generated support class of
232 LoC.

Remember that both projects
start with some Swagger
generated code. Let’s remove
both that code and the unit
tests from consideration and
look only at hand written
code that implements each
service. Dropwizard has
1 ,857 LoC and Spring Boot
has 774 LoC.

Like I said earlier, one of the
biggest complaints against
Java in general is its
verboseness.

Copyright © 2019 Glenn Engstrand p. 6 of 7 pp

Spring Boot

When
exceptions gets
logged in the
code, stack
traces for
lightweight
apps will be
shorter than
the stack
traces for
heavyweight
apps. Since
there are fewer
lines of the
application log
to study, it
might take less
time for the
developer to
debug
lightweight
apps than
heavyweight
apps.

This is what I mean by lightweight vs
heavyweight. Does it really matter?
Lightweight apps load faster than
heavyweight apps. A faster load time might
lead to a shorter outage when Kubernetes
starts restarting pods in order to reset a
destabilized cluster.

How can the Spring Boot
microservice implement the same
requirements as the Dropwizard
microservice in so much less code?
Like I said early in the design
section, both technologies use
annotation based design patterns.
Dropwizard uses it a little but the
Spring Framework uses it a lot. In
order to accomplish that, the
Spring Boot microservice has a lot
more dependencies on
infrastructure based components.
The uber jar for the Dropwizard
microservice is 24 GB in size and
holds 16 K classes. The uber jar for
the Spring Boot microservice is 71
GB in size including 191 other jars
totalling almost 45 K classes

Copyright © 2019 Glenn Engstrand p. 7 of 7 pp

Load Test Results and
Overall Summary

Spring Boot

In conclusion, the Spring
Framework is more
enterprise focused than
Dropwizard. The Spring
Boot microservice had 30%
less code and 60% less hand
written code but also ran
with 31% lower throughput.
If managing complexity (for
more predictable releases)
is your primary concern,
then consider choosing
Spring Boot. If efficiency
and resource utilization is
more important (i.e. a
smaller cloud bill), then go
with Dropwizard. If you still
want to use Spring Boot but
in a more efficient way, then
simply refrain from loading
or using Spring Data and be
okay with writing more
code.

How do the two microservices
perform under identical load? I
used my standard load test
configuration which is 3 threads
forever creating 10 users,
friending each user on average
3 times then posting 10
outbound stories (of 150 words
each) for each user. I had to
rerun the Dropwizard test
because of the need to establish
a new baseline since I replaced
Kong with that custom proxy. I
let both tests run for 2 hours,
then collect and analyze the
performance data. Average
throughput for outbound post
requests to the Dropwizard
microservice was 18,907 per
minute. Latency was 4 ms on
average and 10 ms on the 99th
percentile. For Spring Boot,
average throughput was 13,068
RPM and latency was 3.5 ms on
average and 8 ms on the 99th
percentile.

