
The single writer principle is effective only in the
case of non-idempotent transactions. If your
transactions are idempotent, then it is not
necessary to enforce the single writer principle. For
any transaction to be idempotent, it could be
repeated or replayed in any order and not invalidate
the outcome. Adding columns to a wide row in
cassandra is usually idempotent. Incrementing a
column in a relational database is usually not.

Here you will learn about two similaropen source projects, Mule andCamel, in their different approachesto implementing a proxy to enforcethe single writer principle.

Taming the Single Writer PrincipleMule versus Apache Camel
published September 2013

By Glenn Engstrand

Content Based Router

Basic Sharding
Algorithm

What is the single writer principle?
When trying to build a highly scalable
system the single biggest limitation on
scalability is having multiple writers
contend for any item of data or
resource. If you can design a system
that guarantees that any single item
can only be updated from a single
writer, then you eliminate a lot of
complexity trying to enforce mutual
exclusion or implementing optimistic
concurrency.
We will be comparing Mule and
Camel by implementing a shard
aware content based router to
enforce the single writer principle.
What is a content based router? It
is a particular Enterprise
Integration Pattern that examines
the message content and routes
the message onto a different
channel based on data contained in
the message. The routing can be
based on a number of criteria such
as existence of fields, specific field
values etc. What is sharding? It is a particular

partitioning strategy that supports horizontal
scaling. It is usually talked about in the
context of splitting up a lot of data into
multiple relational databases, all with the
same schema. We will use a sharding
algorithm in the design of our content based
router because it guarantees that any single
primary key value will always map to the
same host.



Single Writer Principle: Mule vs Apache Camel by Glenn Engstrand September 2013

Content Based Routing
the Mule Way

In Mule, you define a series of flows
which describe routes between
endpoints. Inbound endpoints articulate
how messages flow into your proxy.
These messages route around until they
are forwarded on to outbound endpoints.
These endpoints could be HTTP based
(as in our example) but they could also
be ASMQ, JMS, SMTP, etc. These flows
are captured as XML and there is an
Eclipse plugin that permits you to
visually design them. HTTP endpoints
depend on the specification of host, port,
path, and method.

Our Mule implementation of the shard aware content based router is a custom
filter where the inbound properties of each mule message are queried and used to
set the outbound properties. The identifier for the entity to be edited is extracted
and passed on as a part of the path. That identifier is converted to a number and
modulo with the cluster size to map to which server will serve as the single writer.
Cluster size and host pattern are spring injected properties of the custom filter.



At one time, Jetty was considered
a developer only web server and
not ready for production load.
Within the past year, I have found
some companies using Jetty in
production. I guess that shouldn't
be a big surprise. Back in the 90's,
web sphere, jrun, and resin were
considered production grade and
tomcat was not. Now, many
companies use tomcat in large
load production environments.

Single Writer Principle: Mule vs Apache Camel by Glenn Engstrand September 2013
Content Based Routing the Camel Way

Flows in Camel can be described in many different ways. In this example, we will
be using what is known as the Java DSL approach to describing our flow. This
means creating a Camel context and associating with that context a route builder
that dynamically maps the inbound endpoint, handled by the camel jetty plugin,
to a recipient list (for us, always 1) of outbound endpoints. The route builder gets
a reference to the exchange itself from which it can access the message. In
Camel, you access the identifier to be updated through the message headers. You
have to include this bridge endpoint attribute in the query string of the outbound
endpoint URL.

The similarities I found in both Mule and Camel during this project is that both
approaches are flow oriented and very compatible with EIP. They are both pretty
heavy weight with lots of software dependencies and cognitive overheard. They
both use Jetty.
The most obvious difference is that Mule has this
cool visual designer and Camel does not. I have
heard that Camel has a visual designer
somewhere in Jboss Fuse but I was never able to
find it. What I found favorable for Mule was that
its abstractions felt a little more natural to me. No
need for this weird bridge endpoint attribute.
What I liked about Camel was that inbound
message attributes would be automatically
transferred to the outbound message. You had to
code only what was different. With Camel, a POST
gets transferred as a POST and a GET gets
transferred as a GET. With Mule, you have to
specify the method (POST or GET) at design time.




