Scalable Server Side Language Parsing page 1 of 10 pages

Research results into the efficacy and viability of ANTLR as a server side language parsing technology
by Glenn Engstrand

The ability to parse strings in a known and non-ambiguous language to determine context sensitive
knowledge is a powerful concept both in theory and practice. In computer science, this is known as
compiler theory. I remember getting to play with YACC (Yet Another Compiler Compiler) after taking
two courses in compiler theory back in my college days. The modern day equivalent of YACC is
ANTLR which is ANother Tool for Language Recognition. The current version of ANTLR is 3 which
has some pretty interesting features including the ability to use ANTLR to write filters, to have a look-
ahead of indefinite size (more on this later) and to use ANTLR to embed language parsers in a wide
variety of different programming languages and platforms including Java, C#, and Python.

I have used ANTLR many times in the past but mostly as a way to embed programming and
configuration language capability in a command line tool for support or configuration purposes. What I
was interested in discovering was how effective ANTLR could be in server side technology. Is ANTLR
both scalable and per formant enough for the embedding of domain specific language capability in
server technology?

Parsing a string intended to be written in a particular language is kind of like finding your way in a
maze. There are a lot of choices that have to be made and possible back tracking to determine whether
or not this is a valid string. The language is specified in something that looks a lot like EBNF or
Extended Backus-Naur Format. YACC is a LALR(1) parser which means that it looks ahead left to
right and only one level deep. Previous versions of ANTLR were an LL(k) parser which allowed it to
look head k levels deep (i.e. a number provided as a part of the grammar specification). The latest
version of ANTLR is an LL(*) parser which means that it can look ahead any number of steps. This
makes for specifying your EBNF style grammar in a much more human friendly and readable way.

What do you do with a string once it has been parsed to determine whether or not it is compliant to the
intended language specification? With ANTLR, there are three things that you can do with it. You can
embed your own commands in the parser code. You can have the parser construct an Abstract Symbol
Tree that can be traversed to get meaning out of it. You can instruct the grammar to output a string
using a technology called string template.

What I did was explore the use of ANTLR to parse the query string of web requests by invoking the
ANTLR technology in a servlet hosted by the Tomcat application container.

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 2 of 10 pages

Here is the language specification that was used in this experiment.

ask] - repository —"i ‘repository:’ I—"'ISTHIHG|—-

topic _"‘I “topic:* |—"'| STRIHGI—-
interests format —={ ‘format:' |—= STRING |—=

format
count —= ‘count: ' f—= INT |—=

i

interest —= ‘interest:' [~ STRING|—=

interests] smuc;_l_r

Parsers like ANTLR actually split up the job into two passes, a lexical analysis pass and the actual
parsing pass itself. Here is the grammar specification for the lexical analysis phase of the parsing.

STRING ESC_SEQ I—; [:’—-—

{*‘\woeeo*.. "1, #'..'[', '1'.."\uFFFF'}

ESC_SEQ — = "\\'|—= £, v, e, b, Fr, e, e, ') e

= UNICODE ESC } -

UNICODE_ESC [ut] HEX_DIGIT J—={ HEX_DIGIT }—={ HEX_DIGIT }—={ HEX_DIGIT }—=
OCTAL_ESC — = "\\'|—= "0'..'3"}—= '0'.."7"'|—= "0"..'7" |—p=

e A e L A 0'..'7" } -

T

HEX_DIGIT —=f {’0".."9", "A".."F", "a".."f'} |—=

There must also be a way to tell ANTLR what to do with white space which is the part of the language
specification that makes strings written in this language to be human friendly to read without impacting

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing

the semantic meaning of the expression itself.

WS —l——l {'\t'..'wn', ', ') I—I-—

Here is an illustrative sample of a parse tree using this grammar.

ask

page 3 of 10 pages

] Dol Tl
]
| repository: | | "google” | |i’ | "learning” | | topic: | |"ANTLR" | |format: | | "sidebar” | | count: |

| interest: | | "coding” |

Like I said before, you can embed your commands into a parser specification or you can write code to
traverse the AST or Abstract Symbol Tree after parsing has completed. Here is the grammar

specification for the above language with the commands embedded within it.

grammar NewsRedquest;

options {

language=Java;

}

@header {

package com.dynamicalsoftware.news.parser;
import java.io.PrintWriter;

}

@lexer::header {

package com.dynamicalsoftware.news.parser;
}

@members {

public PrintWriter writer = null;

}

ask

(
repository

topic

interests

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 4 of 10 pages

format

|

count

)+

7
repository :

'repository:' STRING

{ writer.write("<tr><td>repository</td><td>" + $STRING.text +
"</td></tr>"); }

7
topic :

'topic:' STRING

{ writer.write("<tr><td>topic to cover</td><td>" + $STRING.text
+ "</td></tr>"); }

.
4

interests :
interest (',' STRING
{ writer.write("<tr><td>area of interest</td><td>" +
SSTRING.text + "</td></tr>"); }
)*
7
interest :

'interest:' STRING

{ writer.write("<tr><td>area of interest</td><td>" +
$STRING.text + "</td></tr>"); }

7
format :

'format:' STRING

{ writer.write("<tr><td>format of response</td><td>" +
SSTRING.text + "</td></tr>"); }

7
count :

'count:' INT

{ writer.write("<tr><td>max number of items to return</td><td>"
+ SINT.text + "</td></tr>"); }

14

INT '0'..'9'+
WS o+ ('

| "\t

| *\r:

| "\n'

)

+ {S$channel=HIDDEN;}

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 5 of 10 pages

~e

STRING
: BN (ESC_SEQ I ~(|\\|||u|))* RN

.
14

fragment
HEX DIGIT : ('0'..'9'|'a'..'f'|'A'..'F') ;

fragment

ESC_SEQ
: N\ (bt e e NN N)
| UNICODE_ESC

OCTAL_ESC
fragment
OCTAL_ESC
: "N\ ("0 ..t3T) (0L TY) ('0r.LtTY)

l\\l (|O|..|7|) (IOI..I7I)
"\\' ("0 T

fragment
UNICODE_ESC
'\\'' 'u' HEX DIGIT HEX DIGIT HEX DIGIT HEX DIGIT

~e oo

This is how you invoke this parser.

private void parse(String cmd, PrintWriter writer) throws
RecognitionException {

ANTLRStringStream input = new ANTLRStringStream(cmd);
NewsRequestLexer lex = new NewsRequestLexer (input);
CommonTokenStream tokens = new CommonTokenStream(lex);
NewsRequestParser parser = new NewsRequestParser(tokens);
parser.writer = writer;
parser.ask();

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 6 of 10 pages
Here is the specification for parsing strings of the same language only this time generating an AST.
grammar NewsRequestAST;

options {
output=AST;
language=Jdava;

}

@header {
package com.dynamicalsoftware.news.parser;

}
@lexer::header {
package com.dynamicalsoftware.news.parser;

}

ask :
(
repository
topic
interests
format
count
)+
7

repository :
'repository:' STRING -> “(‘'repository:' STRING)
7

topic :

'topic:' STRING -> A('topic:' STRING)
H
interests :
'interest:' STRING (',' STRING)* -> "('interest:' STRING+)
H
format :
'format:' STRING -> " ('format:' STRING)
H
count :
'count:' INT -> "(‘'count:' INT)

.
14

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 7 of 10 pages

INT : '0'..'9'+
7
ws oz ('
I "\t"'
I "\r'
| l\nl
)+ {S$Schannel=HIDDEN; }
STRING
. RN (ESC_SEQ | ~(I\\l|llll))* T
fragment

HEX DIGIT : ('0'..'9'['a'.."f'|'A'..'F") ;

fragment
ESC_SEQ

S A R Rl KR N e RN RN EANS
UNICODE ESC

OCTAL ESC
fragment
OCTAL_ESC
: "N\ ('0'..'3") (0L T7) ('0r..tTY)

N0t 7)Y (10T tTY)
| "\ (IOI..I7I)

fragment
UNICODE ESC
'\\' 'u' HEX DIGIT HEX DIGIT HEX DIGIT HEX DIGIT

~e oo

This is how you invoke this parser.

private void parseAST(String cmd, PrintWriter writer) throws
RecognitionException {
ANTLRStringStream input = new ANTLRStringStream(cmd);
NewsRequestASTLexer lex = new NewsRequestASTLexer (input);
CommonTokenStream tokens = new CommonTokenStream(lex);
NewsRequestASTParser parser = new NewsRequestASTParser (tokens);

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 8 of 10 pages

Tree t = (Tree)parser.ask().getTree();
for (int i=0; i<t.getChildCount(); i++) {
Tree child = t.getChild(i);
String action = child.getText();
for (int j=0; j<child.getChildCount(); j++) {
writer.write("<tr><td>" + action + "</td><td>" +
child.getChild(j).getText() + "</td></tr>");
}
}

I was not able to successfully use string template in the Tomcat 6 environment.

Invoking these methods in an HttpServlet was cake.

protected void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException ({
PrintWriter writer = response.getWriter();
String gs = request.getQueryString();
gs = URLDecoder.decode(gs, Charset.defaultCharset().name());
String[] nv = gs.split("&");
String cmd = "";
String action = "embedded";
for (String nvp : nv) {
String[] egp = nvp.split("=");
if (egp.length == 2) {
if (egp[0].equalsIgnoreCase("a")) {
action = egp[l];
} else if (egp[0].equalsIgnoreCase("c")) {
cmd = eqgp[l];
}
}
}

writer.write("<html><head><title>test antlr
servlet</title></head><body><hl>Parse Results</hl><p>action = " + action +
"</p><p>cmd = " + cmd + "</p><table>");
try {
Date before = new Date();
if (action.equalsIgnoreCase("embedded")) {
parse(cmd, writer);
} else if (action.equalsIgnoreCase("AST")) {
parseAST(cmd, writer);
}
Date after = new Date();
writer.write("<tr><td>milliseconds</td<td id=\"duration\">" + new
Long(after.getTime() - before.getTime()).toString() + "</td></tr>");
} catch (RecognitionException e) {
writer.write("<tr><td>invalid</td><td id=\"invalid\">" +
e.getLocalizedMessage() + "</td></tr>");
} catch (Exception e) {
writer.write("<tr><td>error</td><td id=\"error\">" +

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 9 of 10 pages
e.getLocalizedMessage() + "</td></tr>");
} finally {

writer.write("</table></body></html>");
}

Here is what the resulting web page looks like.

Parse Results

action = embedded

cmd = repository: "yahoo" interest: "shopping" format: "activity" topic: "cell phone" count: 21

repository "yahoo"
area of interest "shopping"
format of response "activity”
topic to cover "cell phone"
max number of items to return 21
milliseconds 1

In order to stress test ANTLR in a servlet environment, I repeatedly reloaded this, and other, pages that

invoke the servlet and noted the reported latency (in milliseconds). At the same time, I had set up Tsung
to also perform similar testing.

?xml version="1.0"2?>
<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" [] >
<tsung loglevel="info">
<clients>
<client host="glenn-laptop" use_controller vm="true"/>
</clients>
<servers>
<server host="localhost" port="8080" type="tcp"></server>
</servers>
<load>
<arrivalphase phase="1" duration="60" unit="minute">
<users interarrival="1" unit="second"></users>
</arrivalphase>
</load>
<sessions>
<session name="embedded" probability="50" type="ts_http">
<request>
<http url="/NewsWidget/ask?a=embedded&c=repository:%20%22google
$22%20interest:%20%22coding%22%20,%20%221learning%22%20format:%20%22sidebar

$22%20topic:%20%22Google%20Web%20Toolkit%22%20count:%203" method="GET"
version="1.1"></http>

</request>
</session>
<session name="AST" probability="50" type="ts http">

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

Scalable Server Side Language Parsing page 10 of 10 pages

<request>
<http url="/NewsWidget/ask?a=AST&c=repository:%20%22yahoo%22%20interest:
$20%22shopping%22%20format:%20%22activity%22%20topic:%20%22smart%20phones
$22%20count:%2012" method="GET" version="1.1"></http>
</request>
</session> </sessions>
</tsung>

Running this test stressed the servlet upwards of two times per second for an hour. ANTLR continued
to perform at sub millisecond speeds during the entire experiment. Also, there were no errors reported
during this operation. From these admittedly preliminary findings, I must conclude ANTLR to be a
viable and stable method of server side parsing.

References
LALR Parsing
http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/11-LALR-Parsing.pdf

ANTLR Parser Generator
http://antlr.org/

The Definitive ANTLR Reference: Building Domain-Specific Languages
http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-reference

Java Servlet Technology
http://www.oracle.com/technetwork/java/servlet-138661.html

Extended Backus-Naur Format
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf

Apache Tomcat
http://tomcat.apache.org/

Tsung is an open-source multi-protocol distributed load testing tool.
http://tsung.erlang-projects.org/

Copyright © 2010 Dynamical Software, Inc. All Rights Reserved

http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/11-LALR-Parsing.pdf
http://tsung.erlang-projects.org/
http://tomcat.apache.org/
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf
http://www.oracle.com/technetwork/java/servlet-138661.html
http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-reference
http://antlr.org/

