
Copyright © 2016 Glenn Engstrand

This blog is all about comparing
performance metrics from the Clojure
version against the Scala version of the
functionally identical news feed
service. See my previous blog on how
these two microservices compare in
terms of code.

In both microservices, I used the same
library dependencies as much as
possible, including version. I used the
same EC2 instance set up and
configuration. This means 5 m3.large
instances (one each for Cassandra,
Redis, Kafka, Solr, and the news feed
microservice itself) and a db.m3.large
for the SQL DB with 100GB storage.

I used the same load test scenarios.
This means the same load test
application running 10 threads each on
5 t2.medium instances started 5
minutes apart. The throughput and
latency metrics were of the outbound
post activity.

When I blogged about the Scala news
feed service last, I based the service on
an open source project called Spray. I
liked Spray because its routing based
approach is more appropriate for
microservice development. Spray uses
Akka Actors for its concurrency
control. Typesafe is the company
behind both Scala and Akka so there is
a lot of love between the two. It
seemed like a smart choice at the time.

Also, I was caching prepared
statements in the Scala service. Both
the Clojure and the Scala
implementations depend in the open
source c3p0 connection pooling library.
It turns out that the c3p0 approach to
connection pooling is not conducive to
caching prepared statements so I
stopped doing that.

After looking at the poor performance
metrics and after profiling the
application, I could see right away that
I was going to have to move off of
Spray.

It turns out that there is a serious bug in
the Spray framework that prevents high
throughput. Like I said earlier, Spray
depends on Akka for its concurrency.
You can configure Akka to use either
Java thread executor pools or fork join
pools as its dispatch mechanism. In my
humble experience, executor pools are
more efficient than fork join pools
when it comes to I/O bound processing.
Fork join pools are the default
dispatcher for Akka. Although this
project was configured to use executor
pools, it was very clear when profiling
the service that it was using the fork
join pools anyway.

There is a serious
bug in the Spray

framework.

Scala vs Clojure
performance under load



Copyright © 2016 Glenn Engstrand

page 2 of 5 pages

Finatra service throughput

I wanted to replace Spray with a web
framework that was battle tested in a
high volume production environment.
Twitter developed the Finatra open
source project that runs on top of their
Finagle project that integrates with
Netty. There have been a lot of blogs
recently that advocate for Netty over
Jetty because of its use of
asynchronous I/O. Twitter claims that
they use Finatra a lot in the 100s of
services that make up the Twitter
production environment.

After making those code changes and
another round of load tests, I found that
Finatra throughput was about 3 times
better than Spray. With both Finatra
and Spray, you see better throughput at
the beginning but it slides down to a
quarter of the original performance
and stays there after that. For Finatra,
that is about 33 requests per second.

Except at the very beginning (which
was expected), Finatra latency was
very consistent with a mean of 11 ms, a
median of 10 ms, and the 95th
percentile at 22 ms per request.

Profiling the Scala microservice gave
some good clues as to what was
happening. CPU utilization was 75%.
GC activity was 8.1%. Max heap
memory was the highest at almost
2GB. There were 62 threads actively
operating at peak load.

It turns out that Finatra and Netty
aren't all that efficient because 40%
of the time was spent there instead
of the application specific code.
Because of these inefficiencies, we
saw only 129 write IOPS to the
MySql DB.

Here are the web service dependencies
for the Clojure news feed service. I
used Compojure for the routing rules.
Compojure sits on top of Ring which
can be its own standalone web
container or be configured to integrate
with Jetty. I used the Jetty integration.

Throughput for the Clojure service was
very consistent. Within 5 minutes, it
had climbed to a very steady 100
requests per second.

http://glennengstrand.info/software/architecture/oss/clojure



Copyright © 2016 Glenn Engstrand

page 3 of 5 pages

Finatra service latency

Finatra service profile

Latency, however, was not consistent.
It started pretty small but would jump
up every 10 minutes and was spiky.
The mean ended up at around 200 ms.
The median was 186 ms. The 95th
percentile was 315 ms per request.

Profiling the Clojure microservice
revealed why its performance was so
much better than the Scala service. It
had the highest CPU utilization at 97%
and the lowest GC activity at 6.9%. It
used 30% more threads and 8 times
less heap memory than the Scala
service. Only 21% of the total time was
spent in the web framework, half that
of the Scala version. This resulted in
346 write IOPS to the MySql DB,
almost 3 times more than the Scala
service.

Although latency in the Clojure
service was higher than in the
Scala service, this is normal. It
is expected that a service
capable of running at a higher
throughput would have more
latency.

The write IOPS metric on the
MySql DB was the most
accurate predictor of
throughput.

Why was the Scala version not
capable of reaching the higher
CPU utilization found in the
Clojure version? Typically, a
low CPU % is indicative of
excessive synchronization.

Finatra and
Netty aren't
all that
efficient
because
40% of the
time was
spent there
instead of
the
application
code.



Copyright © 2016 Glenn Engstrand

page 4 of 5 pages

Ring service throughput

Ring service latency

I introduced this blog as
comparing two programming
languages, Scala and Clojure,
through load test performance. It
really is about comparing two
technology stacks. What I
discovered in this learning
adventure was actually quite
interesting.

Consensus wisdom dictates that
Netty is better than Jetty when it
comes to throughput because you
always have to have a thread
dedicated to each request in Jetty
whereas you don't in Netty. In Jetty,
the throughput will always be
constrained to the max number of
threads that the server can have
without excessive task switching
which depends on the number of
CPU cores that the server has.

In order to be functionally equivalent
to the Clojure version, you always had
to return the results in the response to
the request. In Netty, a long running
task can actually kill the whole service
precisely because it is not one thread
per request. Because of that, I had to
run all I/O bound processing in a
separate thread pool. This means more
overhead and higher synchronization.

Finatra is actively promoted by Twitter
both online and in technology
conferences. I learned about Ring and
Compojure through an O'Reilly book
on Clojure. There are basically two
primary commiters to Compojure and
Ring and not much promotion. In the
end, Ring performed better than
Finatra. I guess the lesson learned here
is that the open source project with the
biggest marketing budget isn't always
the best technology.

http://glennengstrand.info/software/architecture/oss/scala



Copyright © 2016 Glenn Engstrand

page 5 of 5 pages

Ring service profile

I said that this was more about
comparing two technology stacks
than two programming languages
but is that completely true? Perhaps
the philosophical differences
between the two programming
languages had subtle, yet profound,
effects on the two different
technology stacks.

Martin Odersky is the inventor of
Scala. He believes that you can have
Functional Programming and
Object Oriented Programing on
equal footing.

In FP, you are not
supposed to mutate
state. Combine that
with OOP and you are
creating a lot of
objects all the time.
This puts more
pressure on Garbage
Collection.

Rich Hickey is the
inventor of Clojure
which has only
enough support of
OOP to provide good
integration with Java
and the ability to
create rudimentary,
lightweight objects.
Instead, Rich
emphasizes Persistent
Data Structures and
Software
Transactional Memory
to make the highly
concurrent stream
based processing of
server side FP more
efficient in the JVM.

Clojure had
highest
CPU, lowest
GC, more
threads, and
less
memory
resulting in 3
times more
capacity
than Scala.




