
Revisiting Scala
How microservices in Scala compare with
that of other programming languages.

by Glenn Engstrand

I use this blog and accompanying
github repo to explore various
technologies and programming
languages by using them to
implement the same news feed
microservice, a digital Rosetta
Stone of sorts. Three years ago, I
developed such a microservice in
Scala. Whi le there was much merit
to the service, it had a lot of code
complexity and lackluster
performance when compared to
the other microservices here. I
decided to try again in Scala using
some different, often older,
technology and programming
paradigm choices. Were there any
real advantages with the new
version?

The Scala microservice that I
wrote back then is in a folder
under the clojure-news-feed
repository cal led server/feed2. The
service integrated with Finatra and
was organized primari ly around a
technique known as the
inheritance based Cake Pattern.

The Cake Pattern uses traits with
self type annotations and mixes
them into entity classes at object
creation time using the “with”
keyword. I chose the Cake Pattern
at that time because it reminded
me of the mixins in Ruby. I have
always been intrigued by mixins
because they afford multiple
inheritance whi le avoiding the
“dreaded diamond” problem.

Finatra is an open source web
service framework developed by
the folks at Twitter. I t is based on
another open source project cal led
Finagle which, in turn, is based on
yet another open source project
cal led Netty. You wi l l find many of
the most popular and wel l
engineered projects layered l ike
this. Finatra is almost six years
old.

This time around, I decided to do
things differently with the
server/feed6 project. Instead of
Finatra, I integrated the service
with Scalatra. Instead of the Cake
Pattern, I used Type Classes.
Instead of JDBC, I used Doobie. I
a lso modernized the API itself with
Swagger.

Scalatra is an open source web
service framework based on Jetty.
I t is almost nine years old and is
simi lar, in principle, to the Ruby
based Sinatra project. Jetty is an
open source servlet container
technology brought to you by the
makers of the Ecl ipse IDE.



feed2

feed6

Copyright © 2018 Glenn Engstrand

Type Classes are not
actual ly classes at al l .
I t is a programming
technique that
combines the use of
traits, currying, and
impl icits in order to
implement ad-hoc
polymorphism.

Most engineers see Type Classes
as a way of separating out data
structures from algorithms but I
l ike to think of it as a Scala-
id iomatic form of Dependency
Injection. The concept of Type
Classes first appeared in another
functional programming language
cal led Haskel l , the first version of
which was released in 1990.

There were some other differences
too. The feed6 project depended on
more recent versions of the drivers
for the underlying data sources. The
feed6 project used the ElasticSearch
specific high level REST cl ient
whereas the feed2 project used a
general purpose Apache HTTP cl ient
to communicate with ElasticSearch.

JDBC al lows Java appl ications to
connect to relational databases.
Doobie is an open source project
that al lows Scala developers to
use JDBC in a way that is more
conducive to functional
programming.

that
accelerates
microservice
development by
generating a lot of

the API code from

a YAML

specification.

Swagger was first

publ ished in 2010

but MDSD has

been around since

the 1980s.

Swagger is a Model Driven
Software Development system

Let's look at some rudimentary
code metrics on the two projects to
see if we can make any val id
comparisons as to complexity.

The feed2 project is composed of
2,724 l ines of hand written Scala
code in 19 fi les across 59 commits.
On average, that is 143 l ines of
code per fi le. The biggest fi le has
594 l ines of code.



feed2

feed6

Copyright © 2018 Glenn Engstrand

What about the memory
footprint of the two
services?

The feed6 project is
composed of 1,118
l ines of Scala code in
28 fi les across 7
commits. Over half of
that is generated by
the Swagger
templates. On
average, that is 40
l ines of code per fi le.
The biggest fi le has
101 l ines of code.

Lines of code may not be a
guaranteed measure of complexity
but in this case the comparison is
val id. The feed6 project is much
less complex than the feed2
project, mostly due to the use of
Type Classes and Doobie.

I was fol lowing functional
programming best practices with
immutable objects so these
somewhat heavyweight objects
were being loaded into memory
with each request. The data store
aware traits have no direct
knowledge of the specific entity
classes that they were mixed in
with so a memento pattern had to
be used as wel l .

The inheritance based Cake
Pattern in feed2 led to a design
where you had entity classes with
al l of the abi l i ties to communicate
with the dependent data stores
mixed in at object instantiation
time.

Alternatively, the Type Classes
approach in feed6 led to a
stratification of objects into
resources, services, DAOs (Data
Access Objects), and POJOs (Plain
Old Java Objects). I used Type

Classes to inject the
DAOs and data source
specific cl ient drivers.
Only the l ightweight
POJOs were created
with each request.
Everything else were
singletons.

This yielded much
lower Garbage
Col lection pressure in
feed6 than in feed2.



feed2

feed6

Copyright © 2018 Glenn Engstrand

Were there
any
differences
in the two
services
respective
threading
models
that we
should be
made
aware of?

How did the two services
performed under load?

Because Netty based services use
asynchronous I/O to handle their
socket connections, they do not
pre-al locate a thread with each
request. Instead, the requests gets
handled in a worker thread
managed by the
NioServerSocketChannelFactory.
This is a highly scalable approach
in reactive systems because you
don’t need enough threads to
handle al l requests currently being
processed; however, the
agreement is that no blocking cal ls
wi l l be made in that worker thread.

If the API must return a result from
a blocking I/O cal l , then it must
wrap that cal l in a Future then
preemptively wait for the Future to
complete. The Future class from
Java 8 won’t work here. This leads
to more code complexity and lower
paral lel ism.

Jetty based services do pre-al locate
a thread with each request. This
means that you can make I/O
blocking cal ls directly in code that
is handl ing a request. I f the I/O
blocking cal l turns out to be slow,
then it won’t block the other
requests being handled by this
service.

That is not true
for Netty based
services.

I ran al l of my load tests for the
two services on the Google
Kubernetes Engine. Each test run
took at least two hours to
complete. Al l API cal ls were
proxied through Kong where the
performance data was col lected
then sent to ElasticSearch and
surfaced in Kibana (hence the
screenshots).



feed2

feed6

Copyright © 2018 Glenn Engstrand

What conclusions can
we draw from this
investigation?

I used StackDriver (acquired by
Google in 2014) to monitor the
uti l ization based metrics.

Average throughput for feed2
was 8,400 outbound post
requests per minute with a mean
latency of 13 ms, a median of
12ms, a 95th percenti le of 19ms
and a 99th percenti le of 30ms.
Average throughput for feed6
was 8,982 outbound post
requests per minute with a mean
latency of 12ms, a median of
12ms, a 95th percenti le of 17ms
and a 99th percenti le of 28ms.

The feed6 service had 7% more
throughput than feed2. The
feed6 service also had 8% less
latency than feed2. The feed6
project required about half of the
RAM needed by feed2.

The differences between feed6 and
feed2 resulted in some nice
improvements in complexity,
performance and capacity but how
did it effect the standing of the
Scala services when compared to
the other microservices?

The code complexity improvements
in feed6 moved Scala from dead
last to third place. I t sti l l had more
l ines of code than the feed (Clojure)
project or the feed4 (node. js)
project but less l ines of code than
the feed2, feed3 (Java), or feed5
(python) projects.

Whi le feed2 was the biggest
memory hog, feed6 came in third
behind feed4 and feed5. In terms of
performance, Scala remains in third
place behind feed3 and feed4.

The feed6 service had significantly
less complexity than the feed2
service. Lines of code is easy to
calculate and compare with. The
feed6 project was 59% smal ler than
feed2 in terms of code size.




