
Revisiting Clojure
by Glenn Engstrand

In 2014, I started what eventually became a series of blogs where
I implemented a feature identical microservice in various
programming languages and technology stacks then compared
and contrasted each implementation with the others in terms of
architecture, design, coding, and performance under load. The
first such implementation was written in Clojure on Ring and
Jetty. When compared to what was to come, this first
microservice turned out to be somewhat unimpressive.

I must confess to a nostalgic
bias towards Clojure most likely
because its predecessor Lisp
really blew my mind back at
university. I have been known
to re-implement microservices
in Scala four times already in
order to improve Scala's
standing. Late last year, I
enhanced the Python on Flask
implementation to be hosted
on uWSGI in order to double
the throughput and half the
latency. I have been keeping
my eyes open for any
promising new Clojure stacks to
evaluate.

I first learned about an open
source project called Pedestal
over a year ago. My original
enthusiasm for this
microservice framework for
Clojure quickly faded when I
realized that its routing
architecture of interceptors,
context binding, chain
providers, and network
connectors, though highly
pluggable, was too complicated
for serious consideration. I
started with their basic
template but even the slightest
changes to the code would
mysteriously break the service.

Copyright © 2021 Glenn Engstrand. p. 1 of 9 pp

In January of this
year, I ran across
an open source
project called
Donkey in an
InfoQ article.
Donkey makes it
easy for Clojure
developers to
write micro-
services on the
Vert.x framework.
I had previously
evaluated Scala on
Vert.x and found it
to be promising.
Even though
Donkey is only six
months old and
has but a single contributor, I decided to evaluate it anyway. A
quick examination of its repo on github reveals that Donkey is, as
of the time of this writing, composed of 26 Clojure files and 113
Java files totaling 12,194 lines of code (LoC).

Architecture
In order for each microservice to be feature identical and
therefore comparable, the architecture has to be very similar.
Like most of its predecessors, this new Donkey implementation
(feed 13) is polyglot persistent with participants and friends in
MySql fronted by Redis and news feed items in Cassandra made
searchable by Elastic Search.

Copyright © 2021 Glenn Engstrand. p. 2 of 9 pp

This implementation is like the
previous two implementations
(feed 11 and 12) in that the
framework is reactive and the
creation of outbound news feed
items is asynchronous. I like
how easy Donkey lets you
handle that with a handler-
mode attribute in the routing
specification of blocking or non-
blocking. Blocking handlers
should return the result
whereas non blocking handlers
should pass the result into a
lambda.

Perhaps the biggest
architectural difference
between that original
implementation (feed 1) in
Clojure and this one is in
terms of the threading
model. Feed 1 uses Ring
which sits on top of Jetty
which dedicates a thread for
each inbound request. Feed
13 uses Vert.x which sits on
top of Netty which uses the
NIO library where there is no
such per request thread
affinity. What does that really
mean to the application
developer? You cannot
perform blocking IO in the
thread in which your code
gets called by the framework.

Another big difference is that feed 1 is built by and runs on Java 8
whereas feed 13 is built by and runs on Java 11 due to the
Donkey and Vert.x dependency requirements. Java 8 vs Java 11
has minimal impact from a Clojure developer perspective, at least
in terms of coding. I used the Eclipse plugin Counterclockwise
back when I was developing feed 1. It looks like that IDE doesn’t
work with Java 11. I get the feeling that Counterclockwise is
more-or-less abandoned at this point. This blog is supposed to be
focused on open source technology and I didn’t really want to
cover any of the proprietary IDEs so I just ended up using Emacs.

Copyright © 2021 Glenn Engstrand. p. 3 of 9 pp

In Clojure, the def
special form is
evaluated at both
compile and run time.

Here are some
requirements
in the first two
feeds that got
dropped by
the third. The
ability to
switch out
some
backends
(PostGres or
MySql, Solr or
Elastic Search,
Redis or
Memcached) based on a runtime configuration switch got
dropped. The instrumentation of the microservice for monitoring
purposes by sending performance data to Kafka got dropped.
Feed 1 has all of these features whereas feed 13 has none of
them.

Design
Feed 1 was a bit of a learning adventure for me as I was new to
Clojure at that time. Feed 13 is designed in a more layered,
modular, and modern way with controllers, services, and Data
Access Objects or DAOs. When creating participants, friends, or
outbound news feed items, feed 1 callers had to use the form
post part of HTTP. Feed 13 just uses content type application/json
request bodies.

Donkey claims to support Compojure routing which was used in feed 1
but I was not able to get it to work with query string parameters and
request bodies so I dropped the use of Compojure in feed 13.

Copyright © 2021 Glenn Engstrand. p. 4 of 9 pp

Here is a fun fact that you may
not know about Clojure. The def
special form is evaluated at both
compile and run time. This is
how you create global variables
such as the singleton
connections to the various
underlying data stores. You may
not have access to those data
stores at compile time. The feed
1 code attempted to guard
against connection initialization
at compile time but in a way
that was not guaranteed. The
feed 13 code never attempts to
connect at compile time. The
code explicitly does this at
runtime during service
initialization.

Leiningen (or lein) is Clojure's
most popular build tool and it
supports the ability to create
uber or standalone jars with AoT
(Ahead of Time) compilation. For
reasons not entirely clear to me,
Lein stopped being able to build
the uber jar for feed 1. This
made the docker build more
complicated because it had to
recreate the build environment
in order to run it without the
uber jar. Lein is able to build the
uber jar in feed 13 so the docker
build process is much simpler.

Copyright © 2021 Glenn Engstrand. p. 5 of 9 pp

I cannot find a good
open source IDE for
Clojure.

Code
The code base for feed 13 consists of 22 files totaling 593 LoC.
The average file size is 34 LoC.

After studying the code for feed 1
and 13, you may notice some
things missing in the new
implementation. Feed 1 used
records whereas feed 13 just uses
hash maps. Feed 1 uses multi
methods which are not in feed 13.
Feed 1 recorded performance data
as JMX metrics. This is missing in
feed 13 because performance data
is now collected by a custom proxy
that publishes that data to both
Elastic Search and Prometheus.

Feed 1 uses Clojure libraries
for connecting to all the
underlying data stores. Feed
13 uses the corresponding
Java libraries instead. The Java
libraries have more support
and are kept up-to-date more
frequently. This makes the
DAO code harder to read since
there is a lot of Clojure to Java
interop. JDBI 3 was used for
accessing the MySql database.

As mentioned earlier, the
def special form is how
global variables are
defined and initialized.
The connectors to the
underlying data stores
are global variables but
they get initialized later
at service startup time.
This is accomplished in
Feed 13 using a
mechanism in Clojure for
managing shared,
synchronous,
independent state known
as atoms.

Copyright © 2021 Glenn Engstrand. p. 6 of 9 pp

Test Automation
The unit tests for feed
1 are notoriously poor
in terms of code
coverage. This is
more a reflection on
my lack of
commitment to unit
testing in 2014 and
some poor design
choices I made in the
day then it is a
problem with Ring.

In feed 13, the unit tests cover a lot of the service code while
mocking all of the DAOs.

The client load app has an
integration test mode which I use
to vet all of the endpoints while
deving. Feed 12 has a Gatling
integration which I use with
Visual VM to profile feed 13. With
a peak load of 16 create
outbound requests per second
(RPS), 4 create participant RPS,
and 9 friend participants RPS, the
Java Virtual Machine (JVM)
showed brief spikes of up to 37%
CPU, a peak of 120 threads, and
up to 83 MB heap memory of
which 40% was filled up with
java.lang.reflect.Method objects.

Why so many reflection objects?
As noted earlier, Clojure runs in
the JVM. The Java programming
language is statically typed but
Clojure is not. That means that
Clojure code has to use the Java
reflection API in order to call Java
methods. You can mitigate that
with what is known as type hints.
I don't use type hints in Clojure
because I feel that they reduce
the readability of the Clojure
code. The consensus wisdom is to
“avoid the use of type hints until
there is a known performance
bottleneck.”

Copyright © 2021 Glenn Engstrand. p. 7 of 9 pp

That client load
app can also be
run as a load test.
I ran the test for
over 2 hours.
There was a
glitch in both
throughput and
latency near the
end of the run but it recovered automatically without any pods
restarting. CPU remained between 25 and 38 percent but RAM
usage slowly yet steadily rose for the duration of the test peaking
at about 0.5 GiB. Here is my guess as to the cause. The blocking
IO part of create outbound is wrapped in a future which is backed
by a Java cached thread pool in such a way that the number of
threads that can be created is without bounds. Each new thread
takes up some memory.

MySql performance was
not the best. I chose JDBI
because it performed so
well in feed 3 so I do not
believe that it is the cause
of the poor performance
here. The default pool size
was 1 so I ran another test
with a pool size of 18. This
is the pool size used for
feed 3. Feed 1 also used a
connection pool.

There was no significant change in
latency but the differences in
throughput were quite
extraordinary. The throughput
increased by a third for both
participants and friends (both of
which always insert a row into
MySql) but decreased by a third for
posting outbound news feed items
(which asynchronously queries
MySql very infrequently).
Something similar to this happened
for feed 12.

Copyright © 2021 Glenn Engstrand. p. 8 of 9 pp

Conclusion
Should Clojure developers choose Donkey on Vert.x or Ring on
Jetty? Feed 13 certainly had less complex code than feed 1 with
18% less code overall and 39% less code per file. I could most
probably achieve similar results if I rewrote the Ring on Jetty
service with a better design.

Create participant or friend participants latency for feed 13 was 2
to 3 times slower than feed 1 but create outbound latency for
feed 13 was 6 times faster than feed 1. Throughput for create
participant or friend participants was about the same between
feed 13 and feed 1. Create outbound throughput for feed 1 was
60% that of feed 13.

Any comparison of create
outbound performance is
unfair since create outbound
is reactive on feed 13 but not
on feed 1. In other words, the
call returns for feed 13 before
the work is done. For feed 1,
the call does not return until
all the work has completed.

I would ask that Clojure
developers consider Donkey on
Vert.x only if they want their
microservices to be reactive and
if they would be okay with the
possibility that they might have
to assume the responsibility of
supporting that Donkey project
at some point in the future.

Copyright © 2021 Glenn Engstrand. p. 9 of 9 pp

