
Python Flask vs Node.js

Tech Stack Rationale

by Glenn Engstrand

For those considering the development of micro-services, two very
popular programming languages for that are Python and javascript
and two popular frameworks for those languages are Flask and
Node. js. You may be wondering which one to choose from. In this blog,
I wi l l explore what it is l ike to develop a rudimentary news feed micro-
service written in version 3 of Python on Flask by comparing that
experience with developing the same micro-service in Node. js

Why choose Flask over Django?
Isn't Django more popular than
Flask? According to Google
trends, it is three times more
popular. According to Stack
Overflow Trends, it is five times
more popular. Django can be used
to implement micro-services but
it was original ly intended to solve
a different problem, namely how
to develop a monol ithic web site
appl ication. Why compare Python
on Flask against Node. js? Many
technology startups are
disi l lusioned with Java and are
seeking alternatives.

Python and javascript are the usual
considerations. At first glance, they
seem somewhat simi lar but there
are some very profound differences
too.

Both are Dynamic Scripting
Languages which makes for a faster
code, run, debug cycle. Neither
programming language uses static
type checking but both offer work-a-
rounds for that. Both are
enthusiastical ly embraced by the
startup community, especial ly in the
Bay Area of Cal ifornia. Both provide
an integration with Swagger where
the API specification itself is defined
in a model contained in a YAML fi le.



Copyright © 2017 Glenn Engstrand

Architecture Differences

node. js

A bui ld time generator uses
templates to generate code and a
runtime l ibrary is also used in such
a way that the programmer
doesn't have to write any code to
implement the API itself. For
Python, that integration is a project
cal led connexion. For Node. js use
the swagger-tools project.

Python 3 includes support for type
hints baked into the language
itself whi le javascript rel ies on
jsdoc annotations and the closure
compi ler which is rarely used in
server side development. Though
sti l l uncommon, you can write
your Node. js apps in TypeScript
which can perform static type
checking. Node. js is more popular
than Python Flask. According to
Google Trends, Node. js interest is
three times more than Python
Flask interest. According to Stack
Overflow Trends, Node. js interest
is thirteen times more than Python
Flask interest. According to
Indeed.com, there are seven times
as many Node. js jobs as there are
Python Flask jobs with only a two
percent reduction in average
salary.

The most profound architectural
difference between these two
programming languages l ies in
their respective threading models.
Theoretical ly, Python is multi -
threaded but threads are under the
control of the Global Interpreter
Lock which means that at most
only one thread can access any
Python objects at any single time
which means no true paral lel ism
can occur in a single process.
Javascript is also single-threaded
per process and uses an event
loop for its concurrency model .
Another important architectural
aspect in the two programming
languages is how symbol ic code
gets converted into machine
language. For Python, the source
code is loaded and recompi led into
the byte code if the modified
timestamp of the former is later
than the modified timestamp of
the latter.

What both Flask and Node. js have
in common is that they are
minimal ist web frameworks that
are wel l suited for micro-service
development. Flask does not
concern itself with compi lation but
Node. js embeds the Chrome V8
compi ler within it. This means that
javascript code is compi led into
machine language code in memory
the first time it is referenced.



Design Differences

Copyright © 2017 Glenn Engstrand

Python / Flask

This is known as J IT or Just In
Time compi lation. After that, the
machine language code is
executed directly. Chrome V8
compi led machine language
code executes faster than
Python compi led byte code.

What both connexion and swagger-tools has in common is that they
both read the same swagger YAML specification at the time that the
appl ication is launched and route requests based on that specification.
How connexion differs from swagger-tools is that the HTTP server
component is pluggable whereas swagger-tools just depends on
Node. js which has embedded within it the HTTP server functional ity.
For connexion, the server backends avai lable are tornado, gevent, and
flask server. Though advise on the Internet recommends using gevent
in production, my own tests revealed that the flask server had the best
performance under load. Flask server can be configured to run in the
fol lowing modes; single threaded single process, single threaded multi -
process, or multi -threaded. Running load tests on al l of these modes
revealed multi -threaded to have the best performance.

Though javascript does support
prototype based object
orientation, development of
Node. js services typical ly rel ies
more on modules than objects.
The opposite is true for Flask
which depends heavi ly on object
orientation. The service developed
and tested here used the very
popular Flask SQLAlchemy
extension which provides access
to MySql via an Object Relational
Mapping layer.

Here is how the threading model
differences manifest differences in
how services are designed. For
javascript, functions that depend
(either directly or indirectly) on
blocking I/O must use a cal lback
mechanism where a function
expression is passed in as an
argument to the higher order
function. Instead of returning the
value from the blocking I/O, that
function expression is cal led with
the desired value. The lambda is
also cal led when the I/O request
fai led.



Coding Differences

Copyright © 2017 Glenn Engstrand

I t is not correct to make any
assumptions about the order in which
these function expressions are executed
in relation to code around it. Recent
improvements include a promise based
approach which is simi lar to cal lbacks
but is easier to chain multiple blocking
I/O cal ls together and separates the
success processing code from the
fai lure processing code. Python
functions can safely return values from
blocking I/O due to its threading model .
Waiting for I/O to complete for one
request does not prevent processing to
occur for other requests.

The Python Flask service has both twice
the number of fi les and twice the number
of l ines of code than the Node. js service.

You would think that, since there is twice
as much Python code as javascript code,
that the Python code would be more
complex. Actual ly, i t is the opposite that
is true. The Python code is heavi ly object
oriented whereas the javascript code is
not. The purpose of object orientation is
to mitigate the complexity of the code. If
you look at just the method that creates a
new outbound post, then you wi l l
understand why the Node. js code is more
complex than the Python Flask code. In
both services, that method inserts a row
into the outbound table.

The submitter’s friends are
fetched and corresponding
rows are inserted into the
inbound table for each
friend. Final ly, a document is
inserted into the search
index. In feed5 (Python
Flask), that method is ten
l ines of code. In feed4
(Node. js) , that method is 38
l ines of code. The other
factor that contributes to
javascript complexity is
managing al l those cal l
backs in a way that properly
releases al located resources
both when the I/O succeeds
and when it fai ls.

A very important
requirement of unit tests is
that they can be run
separately from any
dependent service. The tests
should be able to pass even
when the dependent
services are unavai lable or in
a bad state. That is usual ly
accompl ished by employing
a technique cal led mocking.
For node. js, I used the
Business Driven
Development focused
assertion l ibrary Chai and
the mockery l ibrary for
mocking modules that are
responsible for accessing the
dependent services. There is
an extension to Flask cal led
Flask-Testing which al lows
you to include coverage of
the control lers in your unit
tests but is not BDD focused.
Because I was using Sql
Alchemy for the relational
database access,



Community Differences

Both projects pride themselves on their bare bones nature. Instead of
providing everything you need, these kind of projects focus on just
being a micro-service container and let you pick and choose the other
technologies that you wi l l need. In this way, they are considered to be
un-opinionated. Their main attraction to early stage startups is that
the learning curve is very shal low which lets new programmers feel
l ike they are being productive fairly quickly. Neither one of them has a
lot of features. As stated earl ier, the feed5 project here used Python
version 3. Even though Python 3 has been around for over eight
years, it is sti l l considered to be immature. I ts adoption has been slow
due to its incompatibi l i ty with version 2. I bel ieve Python 3 to be rock
sol id but this perception of immaturity becomes a self fulfi l l ing
prophecy. At the time of this writing, I had to run feed5 in docker
because the standard EC2 AMI was incompatible with Python 3.

Copyright © 2017 Glenn Engstrand

I was able to reconfigure it to connect with SQLite instead of MySql for
the unit tests. SQLite is a relational database for accessing a local fi le
by a single user which is appropriate for unit tests. I used MagicMock
for mocking the DAOs and service classes for the rest of the dependent
services.

Both projects are hosted on GitHub so it is easy to compare them in
terms of community focused metrics. Node. js is only one year older
than Flask. There is easi ly an order of magnitude more commits to
Node. js than to Flask. Both projects have lots of committers. Anecdotal
evidence suggests that there is a lot more onl ine content on Node. js
than on Python Flask and that it is more accurate and helpful too.

The Python service can easi ly integrate with Kafka but I was never able
to find a Node. js driver that worked. Since message brokers are pretty
important these days and since Kafka is the leading message broker,

I would
declare
that this
gap in the
Node. js
community
makes it
less stable
than the
Python
community.



Copyright © 2017 Glenn Engstrand

Performance Differences Summary

About
Glenn

Engstrand

Glenn's focus is on working with engineers in order to
deliver scalable, server side, 12 factor compliant
application architectures. He was a breakout speaker at
Adobe's internal Advertising Cloud developer's conference
in 2017 and at the 2012 Lucene Revolution conference in
Boston. He specializes in breaking monolithic applications
up into micro-services and in deep integration with Real-
Time Communications infrastructure.

The tool ing for both is fairly strong. When it comes to IDEs, pycharm is
the most popular choice for Python and WebStorm is the most popular
choice for Node. js development. I used emacs to code both projects.
Package management for Node. js is npm and Python has pip. There are
almost three times as many packages avai lable in npm as in pip. I was
able to get only one MySql driver to work with Python 3 and Flask
SQLAlchemy and that driver cannot be instal led by pip.

Let's cover the most important
differences which is in how wel l
each technology performed
under load on AWS.

In order to reduce the
differences as much as possible,
I commented out the cal ls to
Kafka in the Python service and
ran the Node. js service in a
Docker container. Both services
were tested in identical
environments and with the same
load test appl ication.

The Python service was almost
twice as slow as the Node. js
service.

The Python service exhibited
14% less throughput than the
Node. js service.

The Python service achieved a
third less CPU uti l ization than
the Node. js service. I t also
handled one third the network
bandwidth.

The service written in Python
underperformed when compared
to the Node. js service. Not only
was it slower, it a lso could not
keep up in throughput and could
not uti l ize as much of the
hardware. I bel ieve that the most
significant reason for these
differences l ies in the difference in
threading models. Python's
threading model permits the
Python coder to avoid the Node. js
event loop inspired cal lback code
complexity but, since only one
thread runs at a time, no Python
service can ever keep more than
one CPU busy. Node. js is also
single threaded but, with cluster
mode enabled, the service can run
single threaded, multi -process
and uti l ize more of the server that
way.




