
There's a lot of buzz about big data these
days. Most of the coverage is executive
where the focus is either on volume, velocity,
variety, variability or transactions,
interactions, and observations. I thought that
it was time to cover the big data topic from a
developer's perspective.

Nothing is more illustrative than a real world
example. I wanted it to be simple enough to
follow along for educational purposes but
more complicated than the trivial word count
example. I wanted the data to be somewhat
of interest and small enough to run on a
laptop but big enough to point out some
gotchas and quirks of data processing. I
decided to pick Q1 2013 crime data for San
Francisco which logged 26,668 incidents
from 34 categories in 10 districts. You can
freely download the current data set as a
CSV or Comma Separated Values text file
from the data.sfgov.org web site.

The first, and most important, open source
technology for processing big data is the
Apache Hadoop project. Why is Hadoop so
important? Prior to Hadoop, if you wanted to
process big data, then you had to get a big
computer. The cost of owning and operating
a mainframe puts it in the reach of utilities,
airline companies, and small countries.
Hadoop changes all of that. What Hadoop
does is break a big job into lots of little jobs
that can be run on a cluster of commodity
machines. Coupled with cloud computing,
this puts big data within reach of SMB and
start ups.

Hadoop isn't a single project. Rather it is a
menagerie of projects that coexist together.
The heart and soul of Hadoop is the HDFS or
Hadoop Distributed File System. What allows
you to break up one big job into lots of little
jobs is Hadoop Map/Reduce. If you're allergic
to the Java programming language, then you
can use either pig or hive which sits on top of
map/reduce and HDFS. You'll like pig if you
are into scripting. Hive will attract you if you
are into SQL.

Big Data with Open Source
by Glenn Engstrand

In this paper, I describe how
companies on a budget can
benefit from big data by
using freely available open
source software. This is a
hands on introduction with
accompanying source code
in a github repository
demonstrating common
analysis techniques on
crime statistics data for the
city of San Francisco.

Hadoop is a menagerie ofsub projects that is verycritical to big data.

a gentle introduction to

Big Data Open Source by Glenn Engstrand April 2013 p 2 of 8 pp

The hive approach to processing our sfcrime statistics would go something like this. First, you
must import that CSV file into HDFS.

Then you would build a raw hive table from the contents of that file.

Finally you would group the raw data into the summary report data of interest.

Hive has its limitations. It can't parse the sfcrime data. Let's dive a little deeper and see what
it takes to write Java programs that use the Hadoop map/reduce infrastructure directly.
The simplest Hadoop map/reduce
jobs run in two phases, a mapper
phase and a reducer phase. The
mapper takes the input to the job
and outputs key, value pairs to the
collector. The infrastructure collates
the output from the mapper such
that all the values with the same key
that were output from the mapper
become a collection associated with
that key that is input to the reducer.
The reducer performs the relevant
summary logic and outputs that to
its collector which ends up being
files in a folder designated for that
purpose.
There is a sample project that contains all
the corresponding code referred to in this
article. You can find all the code here. Code
excerpts in the article are simplified for
illustrative purposes so you should always
go to the project in this repository to really
study the code.

There are three sample map/reduce jobs in
that project. One generates a report of San
Francisco crime totals by category vs week.
Another generates San Francisco crime by
district vs week. The third job creates a daily
activity report necessary to load the San
Francisco crime statistics into an OLAP
cube. More on that later.

bin/hadoop dfs put sfcrime.csv /user/hive/warehouse/sfcrime

create external table sfcrime_raw (IncidntNum string, Category
string, Descript string, DayOfWeek string, Date string, Time
string, PdDistrict string, Resolution string, Address string, X
string, Y string, Location string) row format of delimited fields
terminated by ',' lines terminated by '\n' stored as textfile
location '/user/hive/warehouse/sfcrime';

insert overwrite local directory 'categoryTotal' select Category,
count(1) from sfcrime_raw group by Category;

https://github.com/gengstrand/mapreducesfcrime

The mapper collects datagrouped by Hadoop for thereducer to summarize.

Let's review the district by week job. The mapper parses the raw CSV file and collects
intermediate output where the district name is the key and the date that the crime occurred
is the value.

The reducer gets called where the district name is the key and the iterator contains all the
dates when a crime occurred in that district. The output, that the reducer collects, is a
weekly total of these crimes by district which ends up as something similar to a CSV file in
the output folder.

Big Data Open Source by Glenn Engstrand April 2013 p 3 of 8 pp

List<String> incidents = new ArrayList<String>();
while (values.hasNext()) {

incidents.add(values.next().toString());
}
Collections.sort(incidents);
java.util.Map<Integer, Integer> weekSummary = new HashMap<Integer,
Integer>();
for (String incidentDay : incidents) {

Date d = getDate(incidentDay);
Calendar cal = Calendar.getInstance();
cal.setTime(d);
int week = cal.get(Calendar.WEEK_OF_MONTH);
int month = cal.get(Calendar.MONTH);
int bucket = (month * 5) + week;
weekSummary.put(bucket, new

Integer(weekSummary.get(bucket).intValue() + 1));
}
StringBuffer rpt = new StringBuffer();
boolean first = true;
for (int week : weekSummary.keySet()) {

if (first) {
first = false;

} else {
rpt.append(",");

}
rpt.append(new Integer(weekSummary.get(week)).toString());

}
String list = rpt.toString();
Text tv = new Text();
tv.set(list);
output.collect(key, tv);

String[] col = DataFile.getColumns(value.toString());
Text tk = new Text();
tk.set(col[DISTRICT_COLUMN_INDEX]);
Text tv = new Text();
tv.set(col[DATE_COLUMN_INDEX]);
output.collect(tk, tv);

It's just that easy. Input looks like this.
Big Data Open Source by Glenn Engstrand April 2013 p 4 of 8 pp

And the output to this job looks like this.

The need to summarize raw data into reports is nothing new and there have been plenty of
report writers prior to Hadoop. Here is an example, written in awk, that generates the total
number of crimes for each category.

The true innovation that Hadoop brings
isn't just different syntax. It is that
Hadoop fully embraces distributed
computing without the map/reduce
developer having to know much about
distributed computing. With report writers
like awk, if the data was too big to all fit
on one machine, then you're out of luck.
With Hadoop, just add more servers.
That is why Hadoop is compelling for big
data.

I hope that you are as excited about this as I
am. This is totally cool but it is hard to
visualize trends or gain analytical insight just
by looking at a comma delimited list of
numbers. Most folks use spreadsheet
software to visualize data like this. You can
open up this by district by week output CSV
file in your favorite spreadsheet software and
use the chart wizard to generate a pretty
graph. You get to select from a wide variety of
chart types. You might have to fiddle with the
data range and the data series in order to
represent the information appropriately. You
can also customize the chart elements too.

130245011,BURGLARY,"BURGLARY OF RESIDENCE, UNLAWFUL
ENTRY",Monday,03/25/2013 07:00:00 AM +0000,21:15,BAYVIEW,NONE,1500
Block of MCKINNON AV,
122.388542742273,37.7353389991176,"(37.7353389991176,
122.388542742273)"

BAYVIEW,0,175,251,220,233,155,74,213,216,227,167,67,207,225,177,31
CENTRAL,0,180,212,253,268,156,64,195,247,238,153,57,207,200,145,12

BEGIN {
FS=","

}
/^[09]/{

if ($2 in categoryTotal) {
categoryTotal[$2] += 1
} else {
categoryTotal[$2] = 1
}

}
END {

for (category in categoryTotal) {
printf("%s,%d\n", category, categoryTotal[category])
}

}

Hadoop fully embracesdistributed computing.

Data scientists who like to code will most probably use the R programming language to graph
data like this. You can read the CSV file into a data frame which can then be plotted. The "t"
function transforms or pivots the data for plotting. You need to get the range of values to set
the vertical limits of the graph. The lines command can plot multiple lines on the same graph.
Other commands such as title and legend can complete the graphic. Here is a code excerpt
for plotting weekly crime counts for Richmond, Southern, Tenderloin, and Mission districts.

Big Data Open Source by Glenn Engstrand April 2013 p 5 of 8 pp

And here is the corresponding chart. Notice the dip in all four plot lines? That is not to be
interpreted as a drop in crime for that week. Rather, it is an artifact of how Java handles week
of the month calculations. Months and weeks don't align perfectly. A week can be divided
such that the first half is in one month while the rest is in the next month. That dip is because
the first week of February only had two days in it.

district < read.csv('/home/glenn/oss/hadoop/hadoop
1.0.4/bydistrict/part00000', header = FALSE)
pr < range(0, district$V2, district$V3, district$V4, district$V5,
district$V6)
mission < t(district[district$V1 == "MISSION",])
southern < t(district[district$V1 == "SOUTHERN",])
tenderloin < t(district[district$V1 == "TENDERLOIN",])
richmond < t(district[district$V1 == "RICHMOND",])
plot(mission, type="o", col="red", ylim=pr, xlim=c(4, 12),
axes=FALSE, ann=FALSE)
lines(southern, type="o", col="green")
lines(tenderloin, type="o", col="blue")
lines(richmond, type="o", col="orange")
legend(4, max(pr), c("mission", "southern", "tenderloin",
"richmond"), col=c("red", "green", "blue", "orange"), cex=0.8,
lty=1:2)
title(main="San Francisco Crime Date", sub="Q1 2013", xlab="week",
ylab="crimes")

Big Data Open Source by Glenn Engstrand April 2013 p 6 of 8 pp

Charts like this are static. You can't navigate
through the chart interactively and explore
the data. That is why most analysts use
OLAP technology. Poorly named On Line
Analytical Processing allows you to surface
and navigate through hierarchical, multi
dimensional data using common spreadsheet
software. Most companies who use OLAP to
navigate through their big data typically use
the OLAP technology offered by either
Microsoft or Oracle. In this article, I will show
you how to use Hadoop map/reduce to load
San Francisco crime data into an open
source OLAP project called Pentaho
Mondrian.
Most OLAP technologies these days use a
relational database to actually house the
data in what is called a star schema. The
relational database technology of choice for
Mondrian is MySql.
The daily activity map/reduce job takes the
raw crime data and generates output where
every row is a comma delimited 4tuple of
date, district, category, and number of crimes
committed on that date, in that district, and fit
that category. The load star db program
takes the category by week, district by week,
and daily activity files and uses that data to
populate the MySql tables used by
Mondrian. This load star db program is an
example of an ETL or Extract, Transform,
and Load job. Most ETL suites, such as
Pentaho Kettle, don't require much
programming.
This is a pretty simple and strait forward three dimensional cube. The only measure in this
cube is a count of the number of crimes committed. The dimensions are category, district,
and time. There is an XML file in the project that maps this three dimensional cube to tables
in the mysql database. The district dimension is mapped to the district table. The category
dimension is mapped to the category table. The time dimension is organized into a hierarchy
of year, month, week, and day which is captured in the timeperiod table. In the sfcrime.xml
file, hierarchy is modeled by the level tag. Notice the levelType attributes TimeYears,
TimeMonths, TimeWeeks, TimeDays. When you include this attribute with one of these
values in the level tag, Mondrian understands that this is a time based hierarchy. The crime
measure is mapped to a table called fact.

You will find three map/reduce jobs in the mapreduce
sfcrime project. Category by week and district by
week generate report data from the raw data. Daily
activity takes the output from those two other jobs and
the raw crime data to create a CSV file that the ETL
load star db program uses to load the relational
database tables that get mapped to the OLAP cube.

The user interface to Mondrian is a web app that looks like a spreadsheet. You navigate
through the cube by slicing and dicing, drilling down, rolling up, and pivoting. The
corresponding programming interface is written in an extension to SQL called MDX. The
parts of SQL that are included in MDX are the select statement with both the “from” and the
“where” clauses. The extensions include rows, columns, children, crossjoin, hierarchize, and
union. Here is an example that shows monthly totals of crime per district.

Big Data Open Source by Glenn Engstrand April 2013 p 7 of 8 pp

This is what that query looks like. Notice how the rows and columns
designations describes how to lay out the
data. How does Mondrian know what “All
Districts” means? The answer to that lies in
the sfcrime.xml file of which this is the
relevant excerpt.

It is the allMemberName attribute that identifies what phrase to use when identifying the root
of a dimension. This excerpt shows how the district dimension is mapped to the district table
in the mysql database.
This is actually a fairly common approach to big data. Use some combination of Hadoop pig,
hive, and map/reduce to crunch the big data numbers into something small enough to be
imported by an ETL suite into some OLAP cubes then use OLAP's spreadsheet style user
interface to surface this summary information for your managers and analysts to explore.
I hope that you have benefited from this short little developer focused introduction to big
data. What remains is references to some additional resources if you wish to explore this
topic further.

select Hierarchize(Union(Crossjoin({[Measures].[crimes]},
{[Time].[2013]}), Crossjoin({[Measures].[crimes]},
[Time].[2013].Children))) ON COLUMNS,
Hierarchize(Union({[District].[All Districts]}, [District].[All
Districts].Children)) ON ROWS
from [sfcrime] where [Category].[All Categories]

<Dimension name="District"
foreignKey="district_id">
<Hierarchy hasAll="true"

primaryKey="district_id"
allMemberName="All Districts"
defaultMember="All Districts">
<Table name="district"/>
<Level name="name"

column="name"
uniqueMembers="true"/>

</Hierarchy>
</Dimension>

Big Data Open Source by Glenn Engstrand April 2013 p 8 of 8 pp

https://data.sfgov.org/
The Open Data Portal is provided by the
City and County of San Francisco to
enhance open government, transparency,
and accountability by improving access to
data. The Open Data Portal is a onestop
destination for all approved City data that
will help constituents make better use of
information. This new ease of access will
lead to innovation in how residents interact
with government, resulting in social and
economic benefits for the City.

http://hadoop.apache.org/
The Apache Hadoop software library is a
framework that allows for the distributed
processing of large data sets across
clusters of computers using simple
programming models. It is designed to
scale up from single servers to thousands
of machines, each offering local
computation and storage. Rather than rely
on hardware to deliver highavaiability, the
library itself is designed to detect and
handle failures at the application layer, so
delivering a highlyavailabile service on top
of a cluster of computers, each of which
may be prone to failures.

http://www.gnu.org/software/gawk/manual/gawk.html
This file documents awk, a program that you can use to select particular records in a file
and perform operations upon them.

http://www.rproject.org/
R is a language and environment for
statistical computing and graphics. It is a
GNU project which is similar to the S
language and environment which was
developed at Bell Laboratories (formerly
AT&T, now Lucent Technologies) by John
Chambers and colleagues. R can be
considered as a different implementation of
S. There are some important differences,
but much code written for S runs unaltered
under R.
http://mondrian.pentaho.com/
Welcome to the community home for
Pentaho Analysis Services Community
Edition also known as Mondrian. Mondrian
is an Online Analytical Processing (OLAP)
server that enables business users to
analyze large quantities of data in realtime.
Users explore business data by drilling into
and crosstabulating information with speed
ofthought response times to complex
analytical queries.

http://www.mysql.com/
MySQL is the world's most popular open
source database software, with over 100
million copies of its software downloaded or
distributed throughout it's history. With its
superior speed, reliability, and ease of use,
MySQL has become the preferred choice for
Web, Web 2.0, SaaS, ISV, Telecom
companies and forwardthinking corporate
IT Managers because it eliminates the major
problems associated with downtime,
maintenance and administration for modern,
online applications.

http://hive.apache.org/
Hive is a data warehouse system for
Hadoop that facilitates easy data
summarization, adhoc queries, and the
analysis of large datasets stored in
Hadoop compatible file systems. Hive
provides a mechanism to project structure
onto this data and query the data using a
SQLlike language called HiveQL

