
In a previous blog, I shared
a learning adventure where
I wrote a news feed service
in Clojure and tested it,
under load, on AWS. One of
the biggest impressions that
Clojure made on me was
how its collection oriented
functions like union,
intersection, difference,
map, and reduce made it
well suited for data
processing. I wondered how
well that this data
processing suitability would
translate to a distributed
computing environment.

Recently, I attended
OSCON 2014 which is a
tech conference that
focuses on open source
software. One of the tracks
was on Functional
Programming. Two of the
presentations that I
attended talked about big
data and mentioned open
source projects that
integrate Clojure with
Hadoop. This blog explores
functional programming and
Hadoop by evaluating those
two open source projects.

http://clojure.org/

http://glennengstrand.info/software/architecture/oss/clojure

Functional Programming and Big Data
by Glenn Engstrand (September 2014)

What is FunctionalProgramming? It isa style ofprogramming thatemphasizesimmutable state,higher orderfunctions, theprocessing of dataas streams, lambdaexpressions, andconcurrencythrough SoftwareTransactionalMemory.
What is Clojure?That is a FunctionalProgramminglanguage similar toLisp that runs in theJava VirtualMachine. Additionalfeatures include;dynamicprogramming, lazysequences,persistent datastructures, multimethod dispatch,deep Javainteroperation,atoms, agents, andreferences.

What is Big Data?Systems whose dataflows at a highvolume, at fastvelocity, comes in awide variety, andwhose veracity issignificant areattributed as BigData. Usually thistranslates topetabytes per day.
Big data must beprocessed in adistributed manner.Big data clustersusually scalehorizontally oncommodityhardware. TheApache Hadoopproject is the mostpopular enablingtechnology. A typicalBig Data project isbuilt with eitherCloudera orHortonworksofferings. UsuallyOLAP serves as thefront end where theprocessed data isanalyzed.

http://glennengstrand.info/analytics/fp



In one of those presentations, entitled Big
Data Pipeline and Analytics Platform Using
NetflixOSS and Other Open Source
Libraries, two engineers at Netflix talked
about a lot of open source projects that
they use for their big data pipe. One of
those projects was called Pig Pen.

For anyone with experience with report
writers or SQL, Pig Pen will look like it is
pretty easy to understand. Commands like
loadtsv, map, filter, groupby, and store
seem pretty intuitive at first glance.

From an architectural perspective, Pig Pen is an evil hack. Your Clojure code gets
interpreted as a User Defined Function in a Pig script that loads and iterates through
the specified input file. First, you have to run your code to generate the script. Then,
you have to remove the part of the project specification that identifes the main
procedure and compile your code to create an uberjar and copy it to a place where
that Pig script can load it.
That, and the fact that this was the slowest running and worse documented project
that I evaluated, makes Pig Pen pretty much a non starter as far as I am concerned.

http://www.oscon.com/oscon2014/public/schedule/detail/34159

https://github.com/Netflix/PigPen/

Big Data Pipeline and Analytics Platform Using NetflixOSS and Other Open Source Libraries

Functional Programming and Big Data page 2 of 5 pages



Cascalog was one of the recommended
open source projects that integrates Clojure
with Hadoop. Cascalog is built on top of
Cascading which is another open source
project for managing ETL within Hadoop.

Cascalog takes advantage of Clojure
homoiconicity where you declare your query
to be run later in a multipass process. Many
things, such as grouping are not explicitly
specified. The system just figures it out.
Order of statements doesn't matter either.

At first glance, Cascalog looks like it is ideomatic Clojure but it really isn't. It is declarative
instead of imperative. It looks to be pure Functional Programming but, under the covers, it
isn't. More on this in a future blog.

http://www.oscon.com/oscon2014/public/schedule/detail/34913

http://www.cascading.org/http://cascalog.org/

Functional Programming and Big Data page 3 of 5 pages

Data Workflows for Machine Learning



Apache Spark is a relatively new project that
is gaining a lot of traction in the Big Data
world. It can integrate with Hadoop but can
also stand alone. The only Functional
Programming language supported by Spark
is Scala.

Spark has three main flavors; map reduce,
streaming, and machine learning. What I am
covering here is the map reduce
functionality. I used the Spark shell which is
more about learning and interactively
exploring locally stored data.

Spark was, by far, the fastest technology that
took the fewest lines of code to run the same
query. Like Pig Pen, Map Reduce Spark was
pretty limited on reduce side aggregation. All
I could do was maintain counters in order to
generate histograms. Cascalog had much
more functional and capable reduce side
functionality.

If you are coming to Scala from Java or just
have little FP experience, then what you
might notice the most about Scala is lambda
expressions, streams, and for
comprehensions. If you are already familiar
with Clojure, then what you might notice the
most about Scala is strong typing.

http://www.scalalang.org/

https://spark.apache.org/

Functional Programming and Big Data page 4 of 5 pages

What is reduce side aggregation?
There are two parts to the map reduce
approach to distributed computing, map
side processing and reduce side
processing. The map side is concerned
with taking the input data in its raw format
and mapping that data to one or more
key value pairs. The infrastructure
performs the grouping functionality where
the values are grouped together by key.
The reduce side then does whatever
processing it needs to do on that per key
grouping of values.
Why is map reduce Spark more limited in
its reduce side aggregation capability
than Cascalog?
In the map reduce flavor of Apache
Spark, the reducer function takes two
values and is expected to return one
value which is the reduced aggregation
of the two input values. The infrastructure
then keeps calling your reducer function
until only one value is left (or one value
per key depending on which reduce
method you use). The reducer function in
Cascalog gets called only once for each
key but the input parameter is a
sequence of tuples, each tuple
representing the mapped data that is a
value associated with that key.



I wrote the same job, generating the same
report, in all three technologies but Spark
and Scala was the fastest. Is that a fair
comparison? You have to run both the Pig
Pen job and the Cascalog job in Hadoop.
For my evaluation, I was using single node
mode. Spark is different. You don't run it
inside of Hadoop and I am pretty sure that it
isn't doing much or anything with Hadoop
locally.
Large Spark map reduce jobs would have to
integrate with Hadoop so this may not be a
fair comparison.

But the real test with any technology isn't
how you can use it but rather how you can
extend its usefulness. For Cascalog, that
comes in the form of custom reduce side
functions. In this area, Pig Pen was
completely broken.
In the next blog, I will review my findings
when I reproduced the News Feed
Performance map reduce job, used to load
the Clojure news feed performance data into
OLAP, with a custom function written in
Cascalog.

In the next blog, I will also cover how Spark streaming can be made to reproduce the News
Feed Performance map reduce job in realtime.

In this article, I explored Functional Programming in Big Data by evaluating three different
FP technologies for Big Data. I did this by writing the same Big Data report job in those
technologies then comparing and contrasting my results. Hive is still the most popular way
to aggregate Big Data in Hadoop. What would that job, used to evaluate those technologies,
have looked like in Hive? First, you would have had to load the raw text data into HDFS.
bin/hadoop dfs put perfpostgres.csv /user/hive/warehouse/perfpostgres

Then you would have had to define that raw text data to Hive.
create external table news_feed_perf_raw (year string, month string, day string,
hour string, minute string, entity string, action string, duration string) row
format of delimited fields terminated by ',' lines terminated by '\n' stored as
textfile location '/user/hive/warehouse/perfpostgres';

Here is the map part of the processing.
insert overwrite local directory 'postActions' select concat(year, ',', month,
',', day, ',', hour, ',', minute) as ts from news_feed_perf_raw where action =
'post';

Here is the reduce part of the processing.
insert overwrite local directory 'perMinutePostActionCounts' select ts, count(1)
from postActions group by ts;

Functional Programming and Big Data page 5 of 5 pages

http://glennengstrand.info/analytics/oss




