
Index activity as
reported by Kafka

by Glenn Engstrand
ElasticSearch vs Solr

Are all Lucene based
search engines the

same?

In the world of open source
search projects, there are two
popular web services and
they are both based on
Lucene; ElasticSearch and
Solr. There are already plenty
of onl ine resources devoted
to comparing these two
technologies in terms of
features and functional ity.
What I wanted to find out was
how they compared in terms
of performance under load.
Nothing fancy, mind you. Just
your basic, ordinary term
search on documents of 150
words in length. This blog
documents what I did to
research that topic and what I
discovered in the results.

I d idn't want to make a
benchmark specifical ly for
testing ElasticSearch and Solr
because the actual
implementation detai ls of the
benchmark itself may subtly
favor one technology over the
other. Instead, I took already
developed assets of a micro-
service, and associated load
test, that I wrote for a
rudimentary news feed. That
micro-service already used
Solr. Al l I had to do was
include an implementation for
ElasticSearch then run two
sets of load tests, one for Solr
and the other for
ElasticSearch. Though the
micro-services involve other
technologies, the only
difference between the two
sets of tests is choice of
search technology.

For both Solr
and
ElasticSearch,
I used the
default
configuration
which
basical ly
means a
developer
friendly single
node (no
clustering).



Index activity as
reported by Kafka

Copyright © 2017 Glenn Engstrand

How index schemas are
defined in these two
technologies are different
but the differences are
trivia l . For Solr, the schema
is defined in an XML fi le that
is loaded at time of service
start. For ElasticSearch, the
schema is defined with a
restful PUT command. For
the purposes of these
experiments, how the
documents were analyzed
whi le the index was being
bui lt are very simi lar.

able to use it due to a
version incompatibi l i ty in one
of the dependent l ibraries. I
ended up using the Apache
HTTP cl ient because it is
already needed by another
component so no change to
the dependencies of the
project. ElasticSearch does
soft commits (they cal l i t
Near Real Time or NRT)
automatical ly and both Solr
and ElasticSearch are
configured with a default
time interval of 1 second.

Perhaps a more significant
difference may be in how the
appl ication connects to,
sends documents to, and
retrieves search results from
the search appl iance under
test. For Solr, I used the SolrJ
l ibrary which did not batch
commit but did use soft
commits. The ElasticSearch
appl ication also has a Java
cl ient l ibrary but I was not

Let's cover the actual
experiment itself which was
conducted on AWS on two
different days. One day was
for ElasticSearch and the
other day was for Solr. On
each day, I used the standard
load test appl ication which
spins up three threads. The
first test runs for two hours.
Each thread creates lots of
participants, creates friend



Search activity as
reported by Kafka

Copyright © 2017 Glenn Engstrand

relationships between these
participants, then posts new
activities to these
participants outbound feeds.
I t is this last part that inserts
documents into the search
appl iance. The second test
performs the search
operations for an hour.

How is the performance for
al l this load testing
measured? There are two
approaches. The micro-
service itself logs the
performance relevant
information for each request
to Kafka. I captured those
logs to a fi le then I fi l tered
out al l but the outbound post
and outbound search
operations that I analyzed
with some R scripts
afterwards. I a lso wrote an
appl ication that pol ls each
search appl iance's statistics
plugin once per minute and
writes the delta results to a
CSV fi le. The Kafka data has

the durations for the entire
request and not just the time
interacting with the search
appl iance. Because everything
else is identical , the difference
in durations between the two
sets of tests can be
attributable to the difference
in search engines.

What were the results of the
experiments? I analyzed the
data for both throughput and
latency and cross correlated
those results between the two
different sources of the data.
For throughput, I found a lot
of correlation between the
Kafka data and each search
appl iance's statistics plugin.
Two sources contradicted
each other when it came to
latency. Most probably this
discrepancy is attributable to
either how each statistics
plugin calculates the results
or in how the micro-service
connected to the search
appl iance.



What can be safely
concluded from this

research effort?

Search activity as
reported by Kafka

Copyright © 2017 Glenn Engstrand

For more accurate results,
strive for appl iance neutral i ty
in both your benchmarks and
your measurements. Subtle
differences can lead to a wide
margin for error or
misinterpretation.

When it comes to indexing
new documents, Solr is the
leader in latency. The Kafka
data showed Solr being ten
times faster than
ElasticSearch. The
ElasticSearch statistics plugin
always reported zero latency
for both indexing and
searching which is hard to
bel ieve. ElasticSearch is the
leader by about 13% when it
comes to throughput. This is
true for both approaches to
measuring.

When it comes to searching
documents, Solr is the clear
leader in both throughput and
latency. Both Kafka and the
two statistics plugins recorded
Solr as serving five times
more search requests than
ElasticSearch. According to
Kafka, Solr took one fifth the
time (on average) to serve
those search requests than
did ElasticSearch.

The abi l i ty to verify results
from multiple sources of data
is desirable but be wary of
data that comes from the
vendor whose technology is
under scrutiny.

Are al l Lucene based search
engines the same? I think not.
What I came to conclude in
this investigation is that the
community behind Solr has
had a lot more time to refine
and tune its performance
characteristics in doing what
the Lucene inverted index
was original ly created for.




