
A Comparative Analysis of C# and Kotlin:
A Tale of Two Programming Languages by Glenn Engstrand

When it comes to developing high-
performance microservices, choosing
the right programming language and
ecosystem can make all the
difference. In this article, we'll
compare two popular options:
.NET/C# and JVM/Kotlin. We will cover
the developer experience of and
performance under load for these two
very different, yet also eerily similar,

programming languages and tech stacks as they relate to business focused
microservice development. This is also a story about the different
approaches that companies can take when promoting the use of open source
that they develop and share with the rest of the world.

Historical Context
But first a little back-story to set the context. When I want to learn more
about a particular programming language or tech stack, I have this github
repository where I develop multiple open source implementations of a
feature identical, polyglot persistent, rudimentary news feed microservice. In
that repo, you will also find the code and configuration for a load test lab by
which I subject each implementation to then record the performance based
analytics for the purposes of making comparisons between the different
implementations.

The previous blogs here covered the first 13 implementations in that repo
which used various open source technologies. This blog covers
implementations of feed 14 and feed 15 in that repo which uses more
corporate open source technologies. You may be wondering what the
difference is. After all, isn't most widely supported successful open source
projects backed by corporations with deep pockets these days? Perhaps this
is somewhat subjective but it feels to me that companies like Oracle, Google,

p. 1 of 8 pp Copyright © 2024 by Glenn Engstrand

Lightbend, and Nubank keep their respective general purpose open source
programming languages and related technologies at arms length through
some kind of authentic community process which provides oversight into the
direction that Java, Golang, Scala, and Clojure takes. This blog is about
Microsoft and JetBrains which keep their technologies, .NET/C# and Kotlin
respectively, close and under their tight control.

This is pretty much where the similarities between the two companies end.
Founded in 1975, Microsoft is headquartered in Redmond, WA and has
approximately 221,000 employees. Founded in 2000, JetBrains is
headquartered in Prague, Czech Republic and has around 1,800 employees.
Some folks may believe that Kotlin comes from Google since Google
promotes the use of Kotlin for Android development. This blog focuses on
Kotlin vs C# from the perspective of backend server-side microservice
development.

Feed 14 (Microsoft based C# on ASP.NET)
The tech stack is C# running in the .NET CLR (Common Language Runtime)
hosted in the ASP.NET web server framework. This is version 7. My first
exposure to .NET was version 1. That was back in the days when Microsoft
was run by Steve Ballmer. He was all about bundling. If you wanted to
run .NET, then you had to run it on Microsoft Windows. If you wanted to build

p. 2 of 8 pp Copyright © 2024 by Glenn Engstrand

and run a web service, then it had to be on IIS (Internet Information Server).
Satya Nadella is the current CEO of Microsoft and he has a different strategy.
Modern .NET can easily and naturally be run in Docker on Linux powered
Kubernetes. Web services can be run on the cross platform Kestrel which is
very modern, efficient and can accommodate high performance.

There is a full featured Object Relational Mapping framework available called
the Entity Framework. ORMs tend to be slower so I chose to simply go with
the MySql driver for ADO.NET instead.

The IDE Experience
I did all of
the .NET
coding using
Visual Studio
Code. This is
an open
source
electron app
code editor
under the MIT
license. This is
not the same as Visual Studio which is a full featured IDE that, you know, has
a very enterprise targeted pricing structure and is more focused these days
on cross selling into Azure. VS Code has a great developer experience. It
doesn't feel like a feature locked or dummied down version at all to me.

The Build Chain
The CLI build tool is called dotnet. Unlike the more popular JVM targeting
build tools such as Maven, SBT, or Gradle, it doesn't have a plugin
architecture. You can't integrate your own extensions to the build chain. It
supports most of the operations that you come to expect such as new, build,
run, test, publish, and format (linter). The open source, freely available
repository of build artifacts from which the dotnet build tool can download
dependencies is called nuget.

There is a code coverage capability but I could not get it to work on the free

p. 3 of 8 pp Copyright © 2024 by Glenn Engstrand

version. There are 3rd party commercial offerings for both code coverage
and vulnerability scanning. The dotnet CLI doesn't directly support the
building of docker images or generators such as grpc or openapi. This is not
a big problem as there are plenty of other tools that provide all of that
capability to .NET developers.

I could not find a free profiler for modern .NET that I felt comfortable
installing on my local laptop. Curiously, the best commercial profiler for .NET
comes from JetBrains which is bundled into their enterprise upsell of their IDE
for .NET called Rider.

Here is another curious difference. Test automation assets are not embedded
within the service under test. You have to put that in a separate project with
its own build file. This is not a big problem as you can put both folders under
the same repo.

Performance Results
As mentioned earlier, I run a multi-threaded load test where participants are
created, friend each other, then publish outbound events. Everything is
running in GKS (Kubernetes on Google Cloud). Average RPM for the add
participant operation is 3970 for the add friend operation is 2677 and for the
add outbound operation is 9919. Average duration for the add outbound
operation is 11 ms and the 95th percentile is 16 ms. These are very
respectable numbers.

p. 4 of 8 pp Copyright © 2024 by Glenn Engstrand

Static Code Analysis
The C# implementation of the news feed service totaled 1037 lines of code
within 39 files. That's pretty good in terms of striking a healthy balance
between expressivity and terseness. Comparing with all of the programming
languages from all of the feed implementations by average lines of code per
file where lower is better, this puts C# at the top of the list and Kotlin
somewhere in the middle.

Feed 15 (JetBrains based Kotlin on Broadcom based Spring Webflux)
The tech stack is Kotlin built by Gradle 8 for JDK 17. The web framework is
Webflux which is the reactive extension for Spring boot (3.2). Relational DB
access is via Spring R2DBC. Whereas there is only one CLR which comes
from Microsoft, there are JDKs from at least a dozen companies. The version
of the JDK used here is Temurin which is released by Adoptium which is a top
level project under the Eclipse Foundation which was founded by IBM but
now has hundreds of member companies. Corretto from Amazon is another
popular choice.

The IDE Experience
Like the .NET
code, I also
coded this Kotlin
service using
Visual Studio
Code. As already
mentioned, Kotlin
was invented by
a company called
JetBrains which is

the company behind another editor called IntelliJ. I suspect that this
competing code editor is their main source of revenue (but they do have like
thirty different products that they sell) and they release the Kotlin compiler
yet I had a very smooth and functional experience with VS Code. Not only
does JetBrains not attempt to sabotage the developer experience for Kotlin
on VS Code, but the IntelliJ IDEA CE (community edition a.k.a. free) is also

p. 5 of 8 pp Copyright © 2024 by Glenn Engstrand

pretty good. Like VS Code, IntelliJ IDEA CE doesn't feel like a feature locked
or dummied down version at all to me. The download link for the CE is a little
hard to find on their website.

The Build Chain
Gradle is the preferred build and dependency management tool for Kotlin
which is what I used here. It has a plugin architecture with a rich ecosystem
of extensions. Without any issues, I was able to use ktlint for linting and
formatting, JUnit for test automation, Jacoco for code coverage, and JDK
Mission Control for profiling. The open source, freely available repository of
build artifacts from which the Gradle build tool can download dependencies
is called Maven Central.

Performance Results
I ran the Kotlin implementation with the same load test and the environment
as the C# implementation. Average RPM for the add participant operation is
3107 for the add friend operation is 2097 and for the add outbound
operation is 8299. That is 17% less throughput than the C# version. Average
duration for the add outbound operation is 13 ms and the 95th percentile is
110 ms.

I am not entirely sure why the performance of the Kotlin service was poorer
than the C# service. If I had to guess, then I would suggest that it was
possibly because of the Spring components. While not as heavy weight an
ORM as Hibernate from Spring Data JPA, Spring R2DBC is still less efficient
than just the straight up MySql ADO.NET driver.

p. 6 of 8 pp Copyright © 2024 by Glenn Engstrand

Static Code Analysis
This service has 37 Kotlin files totaling 2037 lines of code. That is almost
twice the size of the C# implementation. What happened? When you
reference a type in a program from a different package, you have to tell the
compiler which package that type can be found in. You use the using
keyword in C# to do that and the import keyword in Kotlin. The Kotlin linter
forces you to import each type in a separate line of code. In the C# code, I
would just specify the entire package (including all types in that package) in
a single using statement. Because of that difference, there are three times
as many import statements in the Kotlin code as using statements in the C#
code.

Language Features
What is similar with both C# and Kotlin is that they are both modern
programming languages that support many emerging popular features.
Examples include null safety, data classes, type inference, extension
functions, properties, and dual paradigm object oriented and functional
programming.

Obviously, there are differences in the syntax of the two programming
languages but I am not interested in that level of minutiae here. Perhaps how
the two programming languages handle concurrency might be worth
mentioning. C# takes a page from javascript with the async and await
keywords in a threading construct known as a task. Since Kotlin runs on the
JVM with a close interoperability with the JDK, it can use any kind of
concurrency available for Java. Kotlin adds first class support for suspendable

p. 7 of 8 pp Copyright © 2024 by Glenn Engstrand

coroutines (i.e. structured concurrency) on top of all that. You won't see any
of that in feed 15 due to the tight integration with Webflux and Spring
R2DBC which both depend heavily on the mono publisher from project
reactor for concurrency.

A Metaphorical Comparison
I started this blog by lumping both C#
and Kotlin into the same corporate
open source category but (borrowing
from the metaphor presented in Eric
Raymond's 1997 essay entitled The
Cathedral and the Bazaar) C# is more
like the cathedral while Kotlin is more
like the bazaar. JetBrains controls the
Kotlin language and compiler but not
the runtime that it operates in nor any
other aspect of the developer
ecosystem (except for their code
editor which is not mandatory).
Microsoft controls almost all aspects
of C# including its runtime and
ecosystem. The source code
for .NET/C# may be under the MIT
license and there is a non-profit .NET

foundation but it is crystal clear to me whose house I am a guest in. Earlier in
this blog, I mentioned that Maven is the repository for Kotlin and Nuget is the
repository for C#. Maven has almost twice as many packages as Nuget.

Conclusion
If you like the consistency, uniformity, performance and perhaps better
operability of the cathedral, then C# is most probably for you. If you prefer a
larger number of more diverse options and choices offering a wider degree of
freedom of coding expression, then consider Kotlin.

p. 8 of 8 pp Copyright © 2024 by Glenn Engstrand

