Building a Scalable
News Feed Web Service
in Clojure

This is a good time to be
in software. The Internet
has made
communications between
computers and people
extremely affordable,
even at scale. Cloud
computing has opened up
technology possibilities
and capabilities to people
and organizations once
thought to be too small
to even dream of
affording it. The open
source software
movement and
component based
architectures have made
it incredibly easy for
individual
engineers/entrepreneurs
or small technology
startups to create great
products with little or no
funding.

published 2014 by Glenn Engstrand

Most experts agree that the
commodifying influence of
the Internet, the cloud, and
open source has lowered
cost based barriers to entry
but what about quality? Do
these technologies deliver
reliable and accurate
capability at scale? That
was what I wanted to
discover when I created this
basic news feed service
using recent and popular
open source projects and
tested its load capabilities
when running on Amazon's
public cloud.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 2 of 9 pp

Here are the open source projects management system. Solr is a web
that I put to the test. Clojure is a service with the popular search
Functional Programming language engine Lucene embedded within it.
built for the Java Virtual Machine. Kafka is an asynchronous
Cassandra is a column oriented big messaging service well suited to
data NoSql data store well suited aggregate event logs. Redis is an
for storing large volumes of time in-memory key-value data store
series data. PostGreSql is a fully most often used as a write behind
ACID compliant relational database cache.

https://github.com/gengstrand/clojure-news-feed

What | did to test this assertion was to
mil.medium mlmedium write a web service that combined all
of these technologies. Then | wrote a
load testing tool and some reporting

il ot utilities to put the service under the
gre load and to measure and evaluate
how it performed. This is all open
source which you can find here.

ml.medium ml.medium ml.large

solr
- | clojure g [load
news e
feed

A : personal laptop
ml.medium ml.medium

kafka tomcat
running
pentaho
cassandra
zoo i
% @

export

———| |transform

load

>

raw
performance
log

O

per
minute
summary

news feed performance
map reduce job

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 3 of 9 pp

Clojure is a Functional not easy for Clojure to do so I
Programming language which wrote some Java code to do
means that it is not easy to this for the proposed news
modify the state of objects feed web service. The support
once they have been created. project is where that code is
One very important capability organized. Clojure and Java
any web service needs is its inter-operate very easily so it

ability to report its own is no big deal to call Java code
performance metrics if queried from Clojure. The support

to do so. On Java based project also wraps access to
services, that is done via a the Solr] API.

technology called JMX. This is

I wanted the

outbound

activity content

to be keyword

searchable A h
which is where pa C e
Solr comes in.

The solr sub-

project
contains all the
configuration
files needed to

index the
outbound feed.

If you have ever used Facebook, then
you should already be familiar with
what a news feed is. This news feed is
very basic. Participants are linked to
each other through what is known as
a social graph. A participant's activity
is captured in his outbound feed.
When a participant posts an activity,
his friends (i.e. who he is directly
connected to on his social graph)
receive a copy of this activity in their
inbound feeds.

The
affordability
of open
source is good
news for
small

business. The
bad news is
that it is all
about up sell
in the cloud.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 4 of 9 pp

The feed project is metrics name space
where all the Clojure rovides bindings to the
code, that implements JMX part of the support
the web service, is project. The core

organized. Here are the component brings it all
main components to the together with the ability
feed service. The cache to either load or store
redis, cassandra, data from the underlying
messaging kafka, mysql, technology. It also logs
postgres, and search erformance data, both
name spaces all provide to JMX and to the Kafka
bindings to their _ feed topic. The handler
respective technologies. name space maps HTTP
The rdbms name space requests to the proper
provides routing logic to functions in the core
either mysql or postgres name space. For saves,
depending on the I would use Clojure's
configuration which is support for

loaded with the settings polymorphism and the
name space code. This multi-method dispatch
service does use mechanism. For loads, I
connection pooling to would use Clojure's

the RDBMS which'is support for higher order
currently set to 50 functions.

maximum pool size. The

The news feed
performance
project is
where all the
Java code, that
implements a
Hadoop map
reduce job for
aggregating the
performance
data from the
news feed web
service, is
organized.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 5 of 9 pp

The etl project
contains a command
line utility that takes
the per minute
aggregated output
from the news feed
performance map
reduce job and
populates a mysql
database ready for
access via the open
source OLAP project
Mondrian.

The load project contains the Clojure code that
implements the load applications. This command line
tool simulates a specified number of user sessions
that create accounts, connect these accounts to each
other socially, then post outbound activity. This is all
done by calling the various end points to the web
service.

Once the code was written, it was time to set the
environment up in order to perform the load test. I
used 5 ml.medium instances from EC2 and 1
db.m1l.medium instance from RDS. What got installed
on the EC2 instances was Cassandra, Solr, Kafka,
Redis, and Jetty.

Each service got their own server but I installed
ZooKeeper on the same instance as Kafka because
Kafka depends on ZooKeeper. Solr can be set up as
either single core or multi-core. I chose mult-core for
its increased flexibility. The news feed service can run
with either MySql or PostGreSql but I choose RDS
running PostGreSql for the load test.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 6 of 9 pp

The news feed web
service handles HTTP
requests with Compojure
which is a routing library
for Ring which is a web
applications library that
can be run to integrate
with Jetty. You can embed
Jetty inside the JAR file
which serves as the build
artifact for the project.
That is how I chose to
build and release this

I ended up using the defaults
for most of the configurations
of these services. I already
explained what you need to do
to the Solr configuration.
Cassandra is the other service
that needs a tweak or two in
its cassandra.yaml file. The
rpc_address and
listen_address will need to be
set to the external IP of the
host where Cassandra is
running. Because the news
feed service is using the CQL
driver and not the Hector
client, you will also need to set

experiment. start_native_transport to true.
throughput If you do
decide to
clojure news feed load test deploy thiS

25000

service to the
cloud, then

s h you will need
15000 ——outputpost +4 extensively
zsza”d'a change the

g. 10000 — postgresql | €€d/etc/confi
s g.clj file
on 1o which
0 f N contains all
5 13 21 29 37 45 53 61 69 77 85 93 101109117 the
1 9 17 25 33 41 49 57 65 73 81 89 97 105113121 connection
per minute for 2 hours settings to
the various
servers.

The defaults in that file are all localhost which is fine if you
are just exploring the service for yourself. See the various
README and docs/intro markdown files for much more

detailed information.

Now that the service is all set up and running, how do we test its
capacity at load? First thing to do is to run the load test application
which is a command line tool, written in Clojure, that simulates a
concurrent number of sessions. Some percentage of those sessions
are just performing keyword search.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 7 of 9 pp

Configuration parameters for the
load test application include host,
port, participate batch size,
minimum number of friends,
maximum number of friends, how
many words for the subject line,
how many words in the activity
content, how many activity posts
per user, and how many searches
per user. I ran this test with 100
concurrent users and 10%
searches. The load application got
to run on its own m1l.large EC 2
instance.

The load test has
completed and
we have a text
file containing all
the performance
metrics. How do
we access and
analyze this
data? I used the
etl Clojure
project (i.e.
Extract,
Transform, and
Load) to input
the summarized 150
performance 100 o
metrics file into 53 N

500
450
400
350
300
250 ‘
200

milllseconds

Now that the load test is running,
how do we collect the
performance data? As mentioned
previously, the service logs this
data to Kafka which provides
command line tools to read the
data and redirect it to a text file.
Once the test concluded, 1
transferred that file to Hadoop
where I ran the map reduce job,
from the news feed performance
project, which input that raw
performance information and
output a text file which contains
the per minute collection of
performance metrics
(throughput, mode, and 95th
percentile) per entity (Participant,
Friends, Inbound, Outbound) and
activity (load, store, post, and
search).

postgresql performance

clojure news feed load test

— m0de

95th percentile

a MySql
database ready
for access by a
Mondrian OLAP
cube.

1 9 17 25

5 13 21 29 37 45 53 61 69 77 85
33 4

93 101 109117
49 57 66 73 81 89 97 105113121

per minute for 2 hours

You have to create the database and set up appropriate credentials.
Run the etl/etc/starschema.sql script to create the tables and stored
procedures that this etl program needs. Modify the etc/src/etc/core.clj
program to connect to the database with the proper credentials. See
the etl/doc/intro.md file for details on how to set up Mondrian with the

news feed performance cube data.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 8 of 9 pp

cassandra performance

clojure news feed load test

250

200

150

millizeconds

— T100E
— 95th percentie NOt SO good. That

A
. fow—

0

5 13 21 29 37 45 53 61 69 77 85 93 101109117
1 9 17 25 33 41 49 57 65 73 81 89 97 105113121

per minute for 2 hours

I suspect that the cause of the big spike
can be attributed to the very nature of

cloud computing itself.

Now that the data
has been collected
and analyzed,
what were the
findings?
Performance at
the beginning was

was because the
Redis cache was
cold. Once the
cache warmed up,
performance was
great. Near the
end of the first
hour, performance
really bottomed
out briefly.

I provisioned and ran the server side software on five EC 2
instances but is that really five different servers? No. Cloud
computing uses virtualization. I sshed to each 64 bit Ubuntu
LTS box but that is actually just the guest OS running along
side other guest OS images on some host server that I never
see. On the cloud, spikes in performance are more likely to
be attributed to increases in activity in the images that
reside along side yours on the real hardware. You can
purchase instances with provisioned guarantees of
input/output processing per second but that costs more. I
did not do that for this test.

At first glance, it looks like
Cassandra writes and Postgres
writes have about the same

latency. The steady-state numbers
for mode are 10 ms for Postgres
and 8 ms for Cassandra. The 95th
percentiles are 50 ms for Postgres
and 47 ms for Cassandra. What
you have to take into account is
that Cassandra was handling 14
times more writes than Postgres.

Solr performance is
very consistent. It was
handling 33 requests
per second with a very
steady 135 ms per
request for the mode
and 213 ms for the
95th percentile.
Compare that with the
5X difference in the
other data stores.

Clojure News Feed Web Service - Copyright © 2014 by Glenn Engstrand - p 9 of 9 pp

The second solr performance
:Loalértoefsghﬁad clojure news feed load test
consistent ggg
performance 500
metrics so I will g 40 —mode
base mOSt Of E 300 ~ = 95th percentile
my findings on % 2””[/ e
that g 4 '
0
information 5 13 21 29 37 45 53 61 69 77 85 93 101109117

1 9 17 25 33 41 49 57 65 73 81 89 97 105113121
alone' per minute for 2 hours
Overall transaction throughput for posting outbound activity is a very
respectable 58 to 83 transactions per second with a latency whose
mode is 393 ms and whose 95th percentile is about 1 second. That is
not bad at all considering how this is with one web server which you
could easily scale out.

Does the Internet, cloud computing and open source really disrupt
entrepreneurism by providing lean startups with the capability to serve
large markets on a budget? Well, we have some mixed results here.
The Internet is clearly disruptive in that consumers will gladly pay to
benefit from its networked effects. Open source is a big win for small
business in that this 1400 lines of code that one guy wrote over the
holidays could easily deliver non-trivial news feed capability at a scale
that the fortune 500 would gladly pay permium for merely a decade
ago. Cloud computing; however, is a different story. The good news is
that it cost me only $10 to run this test. That's about as commodity as
it gets. The bad news is that it is all about up sell in the cloud. You
would need three times as many servers running on at least two
availability zones for a credible High Availability story.
: Increase the RAM
web service performance and CPUs and
clojure news feed load test start provisioning
S IOPs and you will
quickly find that
J the cloud is not

2000

1500

|

—— mode about saving
= §5th percentile money, especially
once you have
= achieved some
: success and have
5 13 21 29 37 45 53 61 69 77 85 93 101109117

1 9 17 25 33 41 49 57 65 73 81 89 97 105113121 a customer base
per minute for 2 hours to protect.

milllzseconds

500

