
Architecture

Clojure @ Low Load

Guice is the most
popular choice for
DropWizard Shops.

DropWizard vs Ring
The Java Framework Strikes Back

by Glenn Engstrand

the recent blogs here, then
you would know this. I take
an emerging technology
and use it to implement a
rudimentary news feed
microservice. Then I test
it under load and share the
results. This is what I have
done for Clojure and
Scala. In today's blog, I
return to Java, only this
time using the functional
programming features
available in version 8.

Let's start with the architecture
for this microservice. I decided
to go with DropWizard version 1
(earlier versions were based on
Java 7), Google Guice, and
Swagger.

DropWizard is a Java
framework for building RESTful
microservices. Though not as
popular as Spring Boot,
DropWizard is more popular
than many similar Java
frameworks, including the
Vert.x project. I picked
DropWizard over Spring Boot
because it has a traditional
open source community. There
is no shepherding organization
trying to upsell you into
enterprise support or features.

Because of this, DropWizard is
actually an opinionated,
convenient packaging of many
other popular, time tested, best
ofbreed open source Java
projects including Jersey 2,
Jetty, JDBI, and Jackson.



Differences

DropWizard @ Low
Load

Copyright © 2016 - Glenn Engstrand

Guice is Google's open source
project for Dependency
Injection. The biggest
competing open source project
for DI is Spring. There was
available community
integrations of DropWizard and
Spring for versions prior to 1
but not for version 1. It seems
to me that, for now, Guice is
the most popular choice for
DropWizard shops.

There has been, as of late, a
bit of a resurgence of interest
in Model Driven Software
Development and the open
source project Swagger is
leading the pack on MDSD
adoption. For this project, I
wrote my own templates to
generate both the APIs and
the models using Swagger.

Not only am I going to talk
about how I wrote this micro
service, I am going to
document what I discovered
when I tested this micro
service under load. In order to
provide some kind of basis for
comparison, I will be
presenting the load test results
of this project with those of the
Clojure version of the same
microservice. Let's cover how
those two projects are
different.

Just in case you have not
already read my previous blogs,
this Clojure microservice uses
open source projects Ring,
which integrates with Jetty to
provide an application container,
and Compojure to handle the
request routing logic.

Probably the biggest and most
obvious difference is the runtime
environmental differences
between the two programming
languages. Though Clojure runs
in the JVM, it is interpreted and
this service is coded to always
call through the reflection API.
The Clojure app runs in Java 7
whereas the DropWizard app
runs in Java 8 as an uber jar that
gets JiT compiled.

There is a trend amongst the
modern Java frameworks, such
as DropWizard and Spring Boot,
to use Java annotations to
control DI and to specify the
REST interfaces.



Similarities
Clojure @ High Load

The DropWizard app
parses JSON yet the
Clojure app does not.

Copyright © 2016 - Glenn Engstrand

For the DropWizard service, I
used generic classes for all of
the different data stores.
Clojure is very light weight on
its object orientation with no
direct language support for
generics.

As indicated previously, this
DropWizard app uses Guice for
DI. The Clojure app also uses
DI but it implements DI in a
naive way by simply evaluating
a Clojure map that is in a
separate file considered to be
part of the configuration.

Though both apps return JSON,
only the DropWizard app
accepts JSON. The Clojure app
POST handlers accept
application/xwwwform
urlencoded data when creating
entities.

The DropWizard app runs
natively in its EC2 instance
whereas the Clojure app runs in
a Docker container in host
mode.

The reason why I picked the
Clojure version of the micro
service to compare against the
DropWizard version is because
of all of their similarities.

The most significant similarity
between these two projects is
that they both use Jetty as the
application container.

Another important similarity is
that, while Java 8 is very
different from Clojure, both
microservices are written in a
functional programming style.

Though the API client libraries
are not identical, both projects
use the same technology stack
when communicating to their
various data stores. They also
use the same versions of Elastic
Search, Cassandra, MySql,
Redis, and Kafka.



DropWizard @ High
Load

DropWizard is
the clear winner.

Copyright © 2016 - Glenn Engstrand

Components

Now that we have compared
DropWizard with Clojure in terms
of code, technology, and project
organization, how did the two
microservices compare in terms
of performance under load? In
order to answer that question, I
used my standard load test. I ran
two tests each per microservice.
The second test tripled the load
from the first test. All tests lasted
about two hours. Like all previous
blogs regarding news feed
performance, we are looking only
at outbound post data.

In terms of raw performance,
DropWizard is the clear
winner by being three times
faster than Clojure across all
performance metrics in all
tests.

In terms of scalability,
DropWizard still out performed
Clojure but the results were not
as clear. In the first round of
tests, the DropWizard service
had 60% higher throughput
than the Clojure service. That
gap narrowed, when we tripled
the load, to only 30%.




