
Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 1 of 14 pp

Writing Reactive
Microservices for the JVM

by Glenn Engstrand
As modern software applications become more distributed, there
is a growing trend where microservices become more reactive
both in their internal structure and in the design of their APIs. In
this blog, I compare and contrast two different reactive
frameworks for the JVM; Vert.x and Play. For reference, I also
compare these reactive frameworks with a servlet based
framework. If you are interested in learning more about both the
developer experience and performance under load for these
reactive frameworks, then read on.

Originally developed at VMware
and now under the guidance of
the Eclipse Foundation, the
Vert.x framework permits both
Java and Scala developers to
organize microservices into
verticles each of which
encapsulates a technical
functional unit for processing
events. The server backend for
Vert.x is Netty.

Originally developed at
Typesafe who later rebranded
themselves as Lightbend, the
Play framework also supports
both Java and Scala
developers. It can be
configured to work on top of
two different backend server
frameworks, Akka HTTP and
Netty.

Feed 12 (Play)
thread count while

Java profiling

Play runs hotter
whereas Vert.x
runs more
smoothly.

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 2 of 14 pp

In terms of search engine
popularity, Vert.x has steadily yet
slowly climbed since it was first
released by Tim Fox in 2011. Play
was introduced in 2007 and
peaked in 2014 but interest has
declined to roughly at the same
levels as Vert.x is currently. Both
technologies are hosted on
github which reveals that Play’s
community appears to be about
an order of magnitude bigger
and more active than the Vert.x
community. At the time of this
evaluation, the rate of commits to
Play have dropped sharply since
their April 2020 layoffs whereas
the rate of commits to Vert.x
have remained about the same.

I have this public github repo
where I implement the same
feature identical, polyglot
persistent, rudimentary news
feed microservice in different
programming languages and
frameworks. I run each
microservice on the same test
lab then capture and analyze
the performance results in
order to form a basis for
comparison between these
various programming
languages. I followed this same
pattern when I evaluated the
Vert.x (feed 11) and the Play
(feed 12) implementations.

Architecture
The architecture for both microservices is pretty much the same
as the previous microservices (except for feed 7). They both use
MySql fronted by Redis for participants and friends, Cassandra
for inbound and outbound feed items, and Elasticsearch for
keyword based search.

Feed 11 (Vert.x)
average create

outbound requests
per minute

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 3 of 14 pp

The biggest architectural
difference between these two
reactive microservices and
their servlet based
predecessors is the threading
model. Servlet based
frameworks must dedicate a
thread for each request
because either input or output
operations normally block the
thread until the operation
completes. Both of these
reactive frameworks can
integrate with the Netty
backend which uses the Java
NIO library where channels,
buffers, and selectors permit
IO without blocking any
application threads used to
service inbound requests.
Unlike the servlet based
frameworks, there is no
dedicated thread for each
request so the service can
accept a lot more connection
requests than
available threads.

When we say that a
microservice is reactive, we
could be referring to its
internal structure, the design
of the API endpoints it exposes,
or both. Feed implementations
11 and 12 are internally
structured reactively and
surface endpoints that are a
mixture of both traditional and
reactive design. Since previous
implementations of the news
feed microservices are more
traditional (every endpoint is
synchronous except for
inserting into Elasticsearch
which is asynchronous except
for the Clojure
implementation) that makes
many performance
comparisons between these
two new microservice
implementations and their
predecessors somewhat
invalid. Here’s why.

Feed 12 (Play)
average create

outbound requests
per minute

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 4 of 14 pp

Traditional APIs are
synchronous which means that
every API call does what is
asked of it before returning a
response to the caller. In that
way, it is said that these APIs
are strictly consistent.

Reactive APIs are
asynchronous. Calls to the API
return a response before all
the work is done. That makes
these APIs eventually
consistent. You can check to
see if what you asked for is
done immediately afterwards
and it might not be done yet
but it will be eventually.

For both of these
microservices, the create
participants and friends
endpoints are synchronous
because otherwise the load
test won't work properly.
Creating an outbound post is
asynchronous. That transaction
is what we focus on primarily
when evaluating performance
during the load test.

Design
While the
architectures are
similar, the
designs of the feed
11 and 12
microservices are
quite different
from each other.

Feed 11 (Vert.x) average latency

Feed 11 (Vert.x)
memory usage

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 5 of 14 pp

As the Vert.x framework starts up,
the main verticle defines all of the
HTTP request routing and deploys
the other nine verticles that service
the event bus. Each handler for a
request route puts the routing
context (both request and response
objects) on an internal cache then
publishes the key to that routing
context to the corresponding topic
on the event bus for that particular
type of request. An instance of the
related verticle consumes the
message, gets the routing context
off of the internal cache, then
processes the request. The
response for the result gets
returned once the end method on
the response object is called.

The biggest design decision with
regards to parallelism is how
many verticle instances per event
bus topic and the size of the
thread pool used by Slick (more
on that later).

As the Play framework starts up,
the routes file under the conf
directory provides the mapping
between the leftmost part of the
path of each request to the
appropriate sird router. Each
router maps the remaining part
of the path and the method to the
appropriate method in the
corresponding controller. The
controller method, in turn, calls
the appropriate service method.
The controller also integrates
with the Play action builder in
order to deliver a Future[Result]
back to the framework which, in
turn, waits for the future to
complete in a Netty compatible
way in order to return the
response.

The biggest design decision
regarding parallelism here is
how many thread pools
(including Slick) and the sizing
of each pool.

Feed 12 (Play)
memory usage

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 6 of 14 pp

The servlet based news feed implementation that I will be
comparing these two projects with is feed 6 running Scalatra
which uses Jetty as the server backend. The routing is very DSL
oriented and returns case class objects from the model package
that get serialized via implicit type conversion with the json4s
jackson library.

Feed 12 (Play) average latency

Coding
There is a lot of commonality in
the Scala code for both feed 11
and feed 12 microservices. They
use the same client libraries for
accessing Cassandra,
Elasticsearch, and Redis. They
both use the Slick library for
accessing MySql. The package
structure is similar; resources,
services, DAOs, and models. The
feed 6 service uses earlier
versions of the same client
libraries and Doobie instead of
Slick.

Both reactive microservices
make use of the same popular
Scala language features; for
comprehensions, case
classes, type classes,
extension methods, and
monads. Where practical,
they both use Circe which is
a Scala library for processing
JSON. They both use Scala
Test which is a framework for
writing and running test
automation.

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 7 of 14 pp

There are a lot of
differences in the code too.
The Vert.x microservice also
has an events package
which holds all of the event
bus consuming verticle
code. It also integrates with
ehcache as the internal
cache for the routing
context objects. You cannot
put routing context objects
directly on the event bus
because they cannot be
serialized. Why can only
serialized objects be
published? Because the
Vert.x event bus can be
distributed via a
configuration switch with an
assortment of cluster
managers that integrate
with such technologies as
Apache Ignite, Apache
Zookeeper, and Hazelcast.

Due to how the Play framework
operates, services and DAOs need
only return results wrapped in
futures. Because of that, there is
no need to explicitly code for a
message bus. You have to be
careful to never wait on any
future or perform blocking IO
without being wrapped in a
future or your whole microservice
may become unresponsive.

That is the biggest difference
between the two frameworks in
terms of coding. With Play, your
code returns the future wrapped
response to the request. The code
does a lot of future mapping in
order to compose them. With
Vert.x you pass that response into
the end method of the response
object. For that reason, the Vert.x
code has a lot of lambdas but few
return values.

Feed 11
(Vert.x) 95th

percentile
latency

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 8 of 14 pp

There are three thread pools for the Play service. Slick gets one
pool. The DAOs, Cassandra, and Elasticsearch clients get a
“repository.dispatcher” pool. Services and controllers use the
default pool.

Feed 12 (Play) 95th percentile latency

There is one more coding difference
between these two microservices,
dependency injection. I just used Play's
out-of-the-box integration with Guice
whose module binds either real DAOs
or mocked DAOs depending on the
value of the environment.mode enum. I
didn't even bother with proper
dependency injection with the Vert.x
microservice. The DAOs are traits with
a real implementation and a mocked
implementation. The service objects
have mutable DAO fields that get
initialized to the real classes but
overwritten to the mocks in the unit
tests.

Here is the static code
analysis for these
projects. For the
Vert.x service, average
per file Lines of Code
is 42.33 with a median
of 33 and a standard
deviation of 33.58.
The single unit test
Scala file is the largest
with 200 LoC. Total
McCabe cyclomatic
complexity is 1,300.
This project is
dependent on 136
external jars.

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 9 of 14 pp

For the Play service,
average per file LoC is
55.48 with a median of
51 and a standard
deviation of 32.92. The
news action builder
Scala file (mostly
boilerplate) is the
largest with 123 LoC
but the unit tests file
is a close second at
122 LoC. Total
McCabe cyclomatic
complexity is 1,764.
This project is
dependent on 177
external jars 90, of
which it has in
common with feed 11.

For the Scalatra service, average per file
LoC is 40.15 with a median of 36 and a
standard deviation of 29.47. Total McCabe
cyclomatic complexity is 1,981. This
project is dependent on 110 external jars.

Testing
Unit testing for both reactive microservices exercises all code
except for the DAOs. With Vert.x, the unit test code calls the
createHttpClient method specifying localhost as the host. For
Play, just create a FakeRequest object. There is a Gatling plugin
for load testing via sbt which I used to profile the JVM running
locally on my dev laptop.

Feed 11 (Vert.x)
CPU utilization

Feed 12 (Play)
Garbage Collection

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 10 of 14 pp

I use a Kubernetes hosted load
test environment when
evaluating performance under
load for these news feed
microservices. In the past, I
always used the create
outbound news feed item API
call as the basis for
comparison because that
endpoint does the most work.
WIth these two microservices,
that endpoint does the least
work because now it is
asynchronous. I still want to
start with that endpoint
because it is precisely that
reactive nature that is the
focus of this investigation.

Here are the load test results
for create outbound on the
Vert.x microservice. Average
per minute throughput of
outbound posts is 14,136.
Mean latency is 5.3 ms.
Median latency is 5 ms, 95th
percentile is 11 ms and 99th
percentile is 15 ms.

I include here the load test
results for create outbound on
the Play microservice
configured to run with both
Akka HTTP and Netty as the
server backends.

For Akka HTTP, average per
minute throughput of outbound
posts is 14,255. Mean latency
is 3.3 ms. Median latency is 3
ms, 95th percentile is 6 ms and
99th percentile is 9 ms.

For Netty, average per minute
throughput of outbound posts
is 20,151. Mean latency is 4.4
ms. Median latency is 4 ms,
95th percentile is 8 ms and
99th percentile is 11 ms.

Feed 12 (Play) CPU
utilization

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 11 of 14 pp

The situation is somewhat reversed for create participant which
is a synchronous API that inserts a row into the participant table
in MySql. For Vert.x, average per minute throughput is 3,035.
Mean latency is 8 ms. Median latency is 7 ms, 95th percentile is
14 ms and 99th percentile is 19 ms. For Play, average per minute
throughput is 1,824. Mean latency is 7 ms. Median latency is 7
ms, 95th percentile is 10 ms and 99th percentile is 13 ms. There
would be periods of high latency at the 95th percentile for the
Play service. Latency for the Vert.x service was more steady.

Feed 11 (Vert.x) 99th percentile latency

Since the create participant
endpoint is synchronous, we
can compare its
performance metrics to
previous news feed
implementations. Average
per minute throughput for
feed 6 (Scalatra) is 3,885.
Mean latency is 6 ms.
Median latency is 6 ms,
95th percentile is 9 ms and
99th percentile is 12 ms.

For the Play service, the
“repository.dispatcher” thread pool is
of size 20 and the Slick database
connection pool has 10 threads. The
service runs on a pod with no limits
and on a VM with 4 vCPUs. The
default thread pool size is matched to
CPUs. Be advised that there are other
thread pools in the JVM including
those dedicated to Netty, Akka,
Logback, and the JRE. I saw a peak of
73 threads when profiling with Gatling
and Visual VM.

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 12 of 14 pp

I ran the Play on Netty load test
again after increasing the thread
pools to 30 and 20 respectively.
Average per minute throughput
of outbound posts dropped to

14,803 but throughput for
participant posts raised to
5,922.

I ran the Vert.x load test
again after making the
corresponding changes there.
Average per minute
throughput of outbound posts
raised slightly to 14,949 and
for creating participants
raised slightly to 3,161.

Feed 12 (Play) 99th percentile latency

Resource utilization for all tests were very comparable, very
stable and well within reasonable limits.

Conclusion
Just to be clear, I believe that
both of these reactive
frameworks are awesome and
would feel comfortable basing
the next application on either
one of them. The same could
be said for the servlet based
predecessor too.

Play performs much hotter
when configured to run with the
Netty server backend than with
the Akka HTTP backend.

With enough thread
tuning, Play apps can
outperform Scalatra
apps.

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 13 of 14 pp

Feed 11 (Vert.x) median latency

The Play service was
roughly a quarter more
complex in its coding
than the Vert.x service
but with significantly
better throughput for
either asynchronous APIs
or synchronous APIs but
not both. Latency and
resource utilization for
the two microservices
were in the same
ballpark.

This could be a bias of mine since I
am no stranger to pubsub but I feel
like the explicit message
management in Vert.x is a little
easier to follow than the everything-
is-a-future approach to Play. Perhaps
I could have gotten better
throughput with more thread tuning
but that is a lot of knobs yielding
fairly hard to predict results. I didn’t
feel like the thread tuning in Play
was going to quickly converge to an
optimal solution.

Vert.x vs Play Copyright © 2020 Glenn Engstrand p. 14 of 14 pp

Feed 12 (Play) median latency

I could have added another layer
of explicit message management
such as the Actor ask pattern to
the Play service but such an
addition would have increased
the code complexity of that
service even more. It is unclear
whether or not adding another
layer on top of what is already
causing the difficulty in thread
tuning would have resolved that
issue.

Perhaps you can get better
performance out of Play
than Scalatra but be
prepared to spend some
time tuning that threading
model. Asynchronous APIs
should perform better than
their synchronous
counterparts but at the cost
that what was requested is
not guaranteed to always
happen.

