
Ionic vs React vs Flutter
by Glenn Engstrand

It is relatively easy for any organization to standardize on a 
single back end tech stack. That can be a good thing as it 
reduces fragmentation issues with employing and managing 
engineers with different skill sets. Front end development is very
different in that regard. There are many different form factors 
that you will need to support in order to deliver a rewarding 
experience to a diverse audience. Learning any tech stack takes 
both time and mind. Staffing up on a tech stack is a big 
commitment to any organization. Which front end tech stacks 
should you commit to in order to achieve the best long term 
benefits?

If you have visited this blog 
before, then you already know 
that I implement feature 
identical rudimentary polyglot 
persistent news feed 
microservices in various 
programming languages and 
tech stacks then compare them 
with previous implementations 
in terms of architecture, design,
coding, and performance under 
load. To that end, I currently 
have thirteen implementations 
of that same back end service.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 1 of 14 pp



But what about the front end? I also evaluate front end tech 
stacks by implementing a GUI for this already coded back end 
news feed service. So far, I have three implementations that I 
will cover in this blog that you are reading now. I will also cover 
some test environments that I use for the news feed. Afterwards,
I will share what I discovered and lessons learned.

Who’s Calling?

What are the different programs that I have coded to call the 
news feed service?

Of course, each service implementation comes with its own unit 
tests. I have a Gatling test that is suitable for local profiling. I 
also have a separate app, written in Clojure, that I use for test 
automation of the service in Kubernetes. Depending on how you 
run it, the program either performs load testing or integration 
testing. Normally, an integration test just makes sure that each 
end point satisfies its contractual agreements. Since these 
implementations all share the same underlying data stores, this 
integration also tests to make sure that the data at rest is what 

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 2 of 14 pp



was expected. When I am deving, I typically run the integration 
test from my laptop while port forwarding to the service in 
Kubernetes. The load test spins up 3 threads forever creating 10 
users, friending each user on average 3 times then posting 10 
outbound stories (of 150 words each) for each user. I usually let 
that run inside the cluster for a couple of hours, then collect the 
performance results for further comparative analysis.

I implemented a web client 
using React which is a free 
and open-source front end 
JavaScript library for 
building user interfaces 
based on UI components. It is
maintained by Facebook and 
a community of individual 
developers and companies. 
React can be used as a base 
in the development of single-
page or mobile applications.

This implementation is a single-
page app (SPA) written in 
TypeScript which gets transpiled 
to JavaScript and eventually 
downloaded then run on the web 
browser. It depends on the 
following popular libraries; 
Redux, Router, and Axios. Redux 
is a predictable state container 
for JavaScript apps. Router 
provides declarative routing for 
React apps at any scale.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 3 of 14 pp



Axios is a promise based HTTP client for the browser and Node. 
There is no coverage of nextjs here so the SPA runs exclusively 
in the web browser but you can choose to host its files either 
locally on your laptop or inside your Kubernetes cluster.

I have also written a couple of cross platform mobile front ends. 
There are some advantages to cross platform development. You 
need only to staff up on a single front end skill set. Most 
organizations already have web developers so that would be the 
most preferred skill set to develop cross platform mobile on. You
would have but a single code base to develop on in order to 
publish apps for both Android and iOS mobile devices. There are
also some disadvantages too. The user experience on cross 
platform mobile apps is more clunky than native apps. Cross 

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 4 of 14 pp



platform apps are not as good as native apps when it comes to 
specific hardware integration.

The first client was built 
near the end of 2017 on top 
of the Ionic framework. 
Ionic is an open source UI 
toolkit for building 
performant, high-quality 
mobile and desktop apps 
using web technologies 
(HTML, CSS, and 
JavaScript) with integrations
for popular frameworks. The
programming language is 
TypeScript.

I used Angular at the time because 
that was what was available and the
mobile application development 
framework that Ionic integrated 
with was Apache Cordova. Today, 
you can develop Ionic apps in 
Angular, React, or Vue and Cordova 
has been replaced with Capacitor so
some of my coverage here may not 
accurately reflect on your 
experience were you to create a new
Ionic project in 2022 or later.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 5 of 14 pp



The second client was built recently using Flutter which is an 
open source framework by Google. Flutter transforms the app 
development process. Build, test, and deploy beautiful mobile, 
web, desktop, and embedded apps from a single codebase. The 
programming language is Dart.

Commonality
The React app and the Flutter app have some things in common. 
They both use the Material UI design which is an open source 
adaptable system of guidelines, components, and tools. Material 
UI is a good choice for a professional yet generic look and feel 
GUI without a lot of effort. These two apps both integrate with 
the edge service which provides oauth2 and a GraphQL facade 
over the news feed service for querying.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 6 of 14 pp



With regards to authentication, the React app uses the implicit 
grant flow while the Flutter app uses the password grant flow. 
More on that later. 

All three front end apps are 
internally designed on some 
variation of the MVC or Model 
View Controller pattern. View 
components are responsible 
for generating an object 
hierarchy of UI delegates that 
can be linked to either the 
DOM (Document Object 
Model) for web or OS specific 
native mobile widgets. Angular
creates the DOM directly but 
React creates a virtual DOM 
which gets synchronized with 
the DOM.

Flutter UI delegates draw 
directly to the canvas. This 
approach makes for a quicker 
repaint time but be advised 
that single code base cross 
platform Flutter apps don’t 
look native at all. For Ionic and
React, the UI delegate 
hierarchy gets built 
declaratively using markup. 
Although the official 
documentation claims 
otherwise, procedural code is 
executed in order to deliver 
the UI delegates for Flutter.

Discovery
There was plenty of discovery encountered while developing 
these front ends.

Ionic is a framework that is a 
combination of various 
technologies that were not 
originally intended to work 
together. There is a lot of 
complexity due mostly, but not 
entirely, on Angular and SCSS. It 
is not always readily apparent 
how everything is interconnected.

Of the three front end implementations 
for the news feed service, the Ionic 
implementation is incomplete and yet has 
twice as much code as the others. This 
code bloat is partially due to the 
accidental complexity of the franken 
framework itself but also partially due to 
the overzealous starter template that I 
used.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 7 of 14 pp



In terms of developer popularity, Ionic originally showed a lot of 
promise. Time has revealed that promise to be somewhat 
unfulfilled. It has achieved nowhere near the level of adoption 
that I had originally expected. This project doesn't even build 
anymore due to all the changes to that framework over time and 
that a backwards breaking change was introduced to a minor 
version upgrade of SCSS (which is part of the Ionic stack) that 
makes it incompatible with recent versions of Node (also a part 
of the Ionic stack).

The edge service is specifically designed to accommodate front 
end apps. It only stands to reason that there would be tight 
coupling between each front end app and the edge service.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 8 of 14 pp



I picked golang for the edge 
service so that I could quickly 
cobble together three different
OSS projects in order to 
provide the necessary 
functionality but, as of the time
of this writing, these repos are 
immature and have bugs. The 
graphql-go project is not as 
readily composable as Apollo. 
The code response type is not 
working properly in the go-
oauth2 repo.

This version of go-oauth2 
depends on a couple of 
packages that are now 
considered as having security 
vulnerabilities. Upgrading to a 
newer version is not trivial. 
The gorilla websocket repo 
does not fully comply with the 
websocket standards around 
the connection and upgrade 
headers and does not permit 
the use of the authorization 
header.

Front end web developers expect to dev with a very streamlined 
code and test cycle. They want to be able to dev locally so that 
they can simply refresh the web browser in order to pick up 
recent changes. For mobile developers, the Android emulator 
and the iOS simulator can be perceived as slow which can be 
aggravating. 

The rule of hooks in the React web framework takes some 
getting used to and the payloadCreator callback from the 
createAsyncThunk in the react redux toolkit does not work 
exactly as documented when it comes to passing in arguments.

Of the three front end stacks, Flutter is the newest technology. It
should come as no surprise that it is also the least mature. 
Eventually, the APIs will settle down but the changes can be 
hard to adjust for in the meantime. This API churn also means 
that a lot of the documentation online is no longer up-to-date 
which means it won't work if you simply copy then paste the 
sample code into your project. Of the three implementations, the
Flutter version required the least amount of code.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 9 of 14 pp



From an architectural perspective,
layering up a GUI is a synchronous
operation and yet calling a back 
end service (used to populate data 
for the GUI) should be an 
asynchronous operation. This 
impedance mismatch needs to be 
accommodated for in every front 
end tech stack. The least 
complicated way to handle that in 
Flutter is to use the FutureBuilder.

That class should be able 
to work with any type of 
Widget but at the time of 
this writing it works only 
with a Scaffold widget. The
scaffold is the top level or 
root widget for a screen 
which provides additional 
capabilities such as an app 
bar, a drawer, or floating 
action buttons.

Flutter claims to be the one framework that you can use for all 
front end development including iOS, Android, Mac OS X, Linux, 
Windows, and web. At the time of this writing, webviews are 
broken when running on the chrome device (i.e. web). A mobile 
app can use a webview in order to use the same oauth2 grant 
flow as a web app. This can be more secure as the mobile app 

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 10 of 14 pp



code never sees the user's password. Because the webview does 
not always work, the mobile app has to collect the user's 
credentials and use the less secure oauth2 password grant flow 
instead.

As mentioned earlier, all three of 
these front end apps are based on 
the MVC pattern. A significant 
amount of controller code is 
dedicated to binding the view to 
the model. It is prudent to limit 
that amount of code by using a 
common library to that purpose. 
For React, I used the Redux 
library. The other popular 
approach for data binding in React
is Context which comes bundled 
with it. Redux is more complex but
does a better job of handling a 
large velocity of data changes with
a smoother repaint.

The inbound fragment 
shows messages from 
other participants (via web 
socket) which could be 
coming at a large velocity. 
For Flutter, I used the 
Provider library. There is a 
language feature in Dart, 
known as null safety, 
where compile time 
checking prevents null 
pointer exceptions at 
runtime. The Provider 
library doesn't support null
safety so I had to disable 
that language feature.

The unit tests for the React SPA do not attempt to mock the 
Redux store. The service calls fail silently and you end up with 
the default store state of a new user. The actual binding logic is 
not covered. The official recommendation is to mock the Axios 
calls which I did not do because I ran into build errors when I 
tried to add Jest.

The unit tests for the Flutter app do mock the providers which 
get wired up in a test harness version of the top level app. The 
binding logic gets covered but not the actual top level app. I 
gave up on the Ionic version before I got to unit tests so there 
are no unit tests for that app.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 11 of 14 pp



Testing this system with the thirteen different implementations 
shows just how easy it is for the integration test to get out-of-
date in terms of test coverage, especially when it comes to the 
occurred and link properties.

Lessons Learned
Here are my best practice recommendations that came out of 
developing these front ends.

For the scope of this work,
I bundled the handling of 
all of the edge concerns 
into a single service but 
that is less than optimal. 
The GraphQL parts are 
tightly coupled with the 
specific type of front end 
app but the oauth2 and 
single sign-on parts should
be the same for all types of
clients. The latter could be
more general purpose in 
nature.

It should be designed as a platform 
service and developed using either 
off-the-shelf technology and / or 
your back end developer friendly 
tech stack. Since the former is 
tightly coupled with the front end, 
consider using front end 
developers to maintain it so it 
should be built with a front end 
developer friendly tech stack such 
as TypeScript on Apollo hosted by 
Node. The Apollo project is a very 
mature and stable framework for 
GraphQL.

For web, use Nginx when deving in Kubernetes or when running
in higher environments such as production or UAT. This 
approach allows for a separation of CORS concerns from each 
back end service or even the edge service. Use react proxy 
(hosted by Node) when deving locally in React. The Flutter 
command line gives you the ability to dev locally either as a web 
app or via the Android emulator. Flutter also gives you the 
ability to build and package your app for the web, for desktop 
(beta), and for both app stores.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 12 of 14 pp



In terms of push notification 
capability, use either an 
external or embedded 
message bus or a distributed 
log on the back end for a 
more scalable solution. On 
the front end, consider 
leveraging GraphQL 
subscriptions which are 
based on the web socket 
protocol.

Get in the habit of updating your test automation (unit tests 
and / or integration tests) every time you change the service 
implementation. A PR with changes to one but not the other 
should automatically be considered suspect.

Crystal Ball Architecture
Wouldn't it be nice if you could 
predict the future when picking a
tech stack to invest in? I would 
never have evaluated the Ionic 
framework if I knew what it's 
future was to become. 

Will Flutter suffer the same fate? 
It is backed by a company with 
deeper pockets but also a 
company known to abandon 
projects that don't get developer 
mindshare quickly enough.

Cost conscious companies choose cross platform mobile 
development because they can just assign the work to web 

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 13 of 14 pp

I ran into build 
errors when I tried 
to add Jest.



developers but Dart is not TypeScript and Flutter is neither 
React nor Angular. Even the most experienced web developer 
will need time to become proficient in Flutter and Dart.

On the other hand Flutter is well thought out, easy to use, has 
convenient packaging options, and can be used to build 
professional, elaborate GUIs with less code. Will web developers 
want to learn Flutter and Dart? Only time will tell.

Ionic vs React vs Flutter Copyright © 2022 Glenn Engstrand p. 14 of 14 pp


