
GraphQL vs REST
by Glenn Engstrand

If you are in a technology company whose application stack
includes Node.js and you are considering writing your next
microservice in GraphQL and / or TypeScript, then this article is
for you. I developed, evaluated and compared two microservices;
one in GraphQL and TypeScript, the other in Express and
JavaScript. Here we cover that analysis in terms of architecture,
historical context, design, code, and performance under load.

The predominant approach to
modern API design is known as
REST which was introduced by
Roy Fielding in 2000. In 2015,
Facebook introduced a competing
approach called GraphQL which
has steadily risen in popularity
since then. There are about two
technology conferences per year
devoted to GraphQL. Depending
on how you measure this,
GraphQL currently gets about a
quarter to a half as much
attention as REST. For those of
you who are into "Crossing the
Chasm" style technology adoption
trends, GraphQL is now in what is
known as the Early Adopter
phase. With REST, you typically

code handlers for each path and
method combination. Each
handler creates the entire
response to each request. With
GraphQL, you define a single
schema. You are supposed to
code resolvers for each field then
let the framework stitch the
individual field responses
together in order to form a
coherent response to the inbound
request.

Copyright © 2019 Glenn Engstrand. p. 1 of 10 pp

Microsoft first released the
TypeScript programming
language in 2012. TypeScript is
transpiled to JavaScript which
gets run. What makes
TypeScript more interesting
than JavaScript is that static
type checking transpiler which
lets you catch more bugs in
your code sooner. TypeScript
was originally intended to be
run in the web browser. I first
developed the Node based
news feed microservice in
January 2017 but I chose
JavaScript back then because
TypeScript wasn't really ready
yet for running server-side in
Node. Interest in TypeScript is
still a small fraction (one tenth
to one fifth) when compared to
JavaScript. In terms of

technology adoption, it is
considered to be in the Early
Majority phase most probably
due to it being the default
language for the Angular web
framework.

I thought that now might be a
good time to see how mature
server side TypeScript is in
terms of microservice
development. I also wanted to
explore GraphQL in order to
fully understand its merits. So I
developed a rudimentary news
feed microservice that is
similar to my original
JavaScript microservice based
on the Express framework
(feed 4) only this time in
TypeScript and based on the
Apollo Server for GraphQL
(feed 10). All of this code is
open source that you can find
in my personal github repo. I
needed to evaluate feed 10
under load so I also had to
enhance the load test
application (load) and the API
gateway (proxy) in my test lab
because GraphQL APIs are very
different from RESTful APIs.

Copyright © 2019 Glenn Engstrand. p. 2 of 10 pp

Architecture
In order to better understand the relative merits of these two
microservices, let us compare and contrast their respective
software architectures.

We want to be able to make
a valid comparison between
feed 4 (Express and
JavaScript) and feed 10
(GraphQL and TypeScript)
so both microservices need
to be as feature identical as
possible. This means that
there are a lot of similarities
between the two
implementations.

Both microservices are polyglot
persistent. They both use MySql
fronted by Redis for participants
and friends, Cassandra for
inbound and outbound feed items,
and Elasticsearch for keyword
based search. Both microservices
run in Node which has embedded
within it Google's open source V8
engine for running single-
threaded JavaScript.

There are also profound differences in the architectures of
these two microservices.

Node provides the application
with a single-threaded
runtime so every method call
has to be non-blocking. For
feed 4, I used the callback
mechanism where each
function is passed as part of
its arguments two functions
for handling success and
error results. For feed 10, I
used the async and await
mechanism which depends on
promises.

The API design for feed 4 is
somewhat RESTful. In the URL for
each API call, the path identifies
the main entity; participants,
friends, inbound, and outbound.
The HTTP method is POST for
creates and GET for fetches.

Copyright © 2019 Glenn Engstrand. p. 3 of 10 pp

Having to rewrite a low-level
component in order to make
something as fundamental
as unit tests working is not a
good sign in terms of
software maturity.

Here is an illustrative REST example which fetches the inbound
feed items for participant 4 from feed 4.

The GraphQL API design for feed 10 consists of three mutations
and two queries. There is a single schema where friends,
inbound, and outbound are all attributes of each participant.

In this example request, the query as before is shown only this
time in GraphQL. Notice that the request specifies what should
get returned in the response.

Historical Context
In the days before REST, API design
was RPC style where every endpoint
was basically a Remote Procedure Call.
Like America’s wild, wild West period
in history, this was a very chaotic time
for APIs. Developers designed them in
order to expedite the immediate
feature at hand. Typically, this included
introducing hidden side effects to the
APIs such that you had no idea if their
behavior was a feature or a bug. What
REST did was introduce some basic
rules of the road that made it easier to
reason about APIs, to learn them, and
to write test automation for them.

For a large enterprise
with a complex business
model, RESTful APIs
tend to have a large
number of endpoints.
Without adequate and
up-to-date
documentation, it could
be difficult to figure out
which endpoint to call.
Perhaps that is why
Swagger (also known as
Open API) has steadily
increased in popularity
over the past five years.

Copyright © 2019 Glenn Engstrand. p. 4 of 10 pp

curl ${FEED_URL}/inbound/4
[{“occurred”:”2019-11-02”, "subject":"test subject", “story”:”test story”}]

curl \
 -X POST \
 -H "Content-Type: application/json" \
 --data '{ "query": "query { participant(id: 4) { inbound { occurred, subject, story } } }"}' \
 $FEED_URL
{"data":{"participant":{"inbound":[{“occurred”:”2019-11-02”, "subject":"test subject",
“story”:”test story”}]}}}

With GraphQL, you have a single endpoint. There are queries,
mutations, and a schema. Queries allow you to write little mini-
programs you send to that single endpoint that fetch data in the
context of the schema. Mutations, however, are just straight up
RPCs.

Design
What are the major differences between the technology designs
of these two microservices?

The API for feed 4 is based on
the same Swagger specification
as the feed 3 - 9
implementations. This
implementation uses a Node
package called swagger-tools
which reads the Swagger spec
then generates the routing for
that spec within the Express
framework. That routing maps
each request to the
corresponding controller which,
in turn, invokes the appropriate
service. There are usually two
handlers for each entity. One for
GET and one for POST. The
outbound entity has a third
handler for keyword based
search. The feed 4
implementation uses the low
level drivers for Cassandra,
MySql, and Redis. It uses the

Node http module for accessing
Elasticsearch.

Copyright © 2019 Glenn Engstrand. p. 5 of 10 pp

In feed 10, the schema, queries, and the mutations are specified
as a set of type definitions. The connections to the underlying
datastores are all opened and used to initialize the services for
participants, friends, inbound, and outbound. In the resolvers,
each field in the schema and all of the mutations are mapped to
their respective service calls. The GraphQL server is then
initialized with these type definitions and resolvers then started
in order for the service to begin listening on the configured port.
Instead of the low level MySql driver, the feed 10 service uses
TypeORM where annotated TypeScript classes map relational
database tables to and from objects. The actual GraphQL server
itself comes from the graphql-yoga project. The other viable
alternative for Node is the Apollo server which is more popular. I
chose the graphql-yoga project because it wraps the Apollo
server in a way that is simpler to comprehend and easier to use.

Code
What was learned in the actual coding of these two
microservices?

Copyright © 2019 Glenn Engstrand. p. 6 of 10 pp

Let’s start with some
rudimentary static code
analysis. In the feed 4
microservice, there are a total
of 634 Lines of Code with a per
file average of 39 LoC. In the
feed 10 microservice, there are
a total of 422 LoC with a per
file average of 42 LoC.
Cyclomatic complexity for feed
4 is 189 and for feed 10 is 672.
I could not find a working
package that computed the
cyclomatic complexity for
TypeScript so I first transpiled
each file into JavaScript then
computed the cyclomatic
complexity with the same tool
that I used for feed 4.

I was not successfully able to
create a working unit test for
this service. I tried many
different test frameworks and
mocking libraries. The trouble
is with transpiling the service
code that uses the Redis client.
That driver is old school with
callbacks. I use a package,
called then-redis, which wraps
the Redis client in promises
such that it can be called by
the async and await
mechanism. This works
perfectly in the service itself
but confuses the transpile for
the unit test run which
complains that the return value
for redis.get method should be
boolean instead of a string.

Copyright © 2019 Glenn Engstrand. p. 7 of 10 pp

Could I have found a way around this problem? Sure. I could
have written my own Redis wrapper in such a way as to
completely hide the actual Redis client. Part of the evaluation to
any technology choice includes the entire ecosystem of related
components. Having to rewrite a low-level component in order to
make something as fundamental as unit tests working is not a
good sign in terms of software maturity.

Performance
How did the GraphQL on TypeScript microservice compare to
the Express on JavaScript microservice when it came to
performance under load?

The usual performance analysis
for these microservices focuses
on capturing and analyzing the
per minute throughput and
latency of the create outbound
call because that API does the
most work. For feed 10,
throughput was 9,817 RPM with
a mean latency of 5 ms, a
median latency of 4 ms, and a
99th percentile of 15 ms. For
feed 4, throughput was 12,629
RPM with a mean latency of 5
ms, a median latency of 5 ms,
and a 99th percentile of 12 ms.

Copyright © 2019 Glenn Engstrand. p. 8 of 10 pp

I also wanted to analyze the performance for the create
participant calls because that endpoint exercises MySql which is
a big difference between the two implementations. The feed 10
microservice uses TypeORM instead of the low level MySql
driver. For feed 10, average throughput was 3,874 RPM with an
average latency of 10 ms. For feed 4, throughput was 4,995 RPM
with an average latency of 7 ms.

The feed 10 service had profiling turned on during its load test.
A significant amount of time was spent parsing the GraphQL
requests and in the TypeORM module but not quite enough to
completely account for the performance differences.

Conclusion
Which is better for microservice development in 2019? GraphQL
or Express? TypeScript or JavaScript?

Copyright © 2019 Glenn Engstrand. p. 9 of 10 pp

The GraphQL on TypeScript
service was 22% less efficient
than the Express on JavaScript
service yet required a third less
code to implement. Perhaps the
former would be more
compelling than the latter if you
were willing to pay a bigger
cloud bill in order to achieve a
faster feature velocity. For real
world applications, there is a lot
of devops maturity needed for
feature velocity so your results
may vary.

Subjectively, I would say that
the GraphQL on TypeScript
code was less complex than
the Express on JavaScript
code. The framework oriented
style of GraphQL may require
a little getting used to by
server-side JavaScript
developers. Some of that
complexity got pushed over to
the applications that call the
microservice because
GraphQL APIs are harder to
consume than RESTful APIs.

I prefer static typing which causes me to favor TypeScript over
JavaScript but there are still some compelling maturity issues
that need to be resolved before I would feel completely
comfortable recommending TypeScript on Node right now. Part
of the reason why feed 10 was less complex than feed 4 was
because async and await is a lot easier to code than callbacks.
Modern JavaScript that runs in Node can also use the async and
await mechanism.

I feel like GraphQL queries could be a good fit for orchestration
services. Also known as Backends for Frontends, these types of
services don’t access databases directly. Instead, BfFs
orchestrate the calling of other microservices (known as data
APIs) in order to fetch data. In that way, a GraphQL service
could act as a simplifying facade over a complex collection of
RESTful microservices.

Copyright © 2019 Glenn Engstrand. p. 10 of 10 pp

Before REST API design was like the wild, wild, West.

	Architecture
	Historical Context
	Design
	Code
	Performance
	Conclusion

