
This is a good time to bein software. The Internethas madecommunications betweencomputers and peopleextremely affordable,even at scale. Cloudcomputing has opened uptechnology possibilitiesand capabilities to peopleand organizations oncethought to be too smallto even dream ofaffording it. The opensource softwaremovement andcomponent basedarchitectures have madeit incredibly easy forindividualengineers/entrepreneursor small technologystartups to create greatproducts with little or nofunding.

Most experts agree that the
commodifying influence of
the Internet, the cloud, and
open source has lowered
cost based barriers to entry
but what about quality? Do
these technologies deliver
reliable and accurate
capability at scale? That
was what I wanted to
discover when I created this
basic news feed service
using recent and popular
open source projects and
tested its load capabilities
when running on Amazon's
public cloud.

Building a ScalableNews Feed Web Servicein Clojure
published 2014 by Glenn Engstrand

Here are the open source projects
that I put to the test. Clojure is a
Functional Programming language
built for the Java Virtual Machine.
Cassandra is a column oriented big
data NoSql data store well suited
for storing large volumes of time
series data. PostGreSql is a fully
ACID compliant relational database

management system. Solr is a web
service with the popular search
engine Lucene embedded within it.
Kafka is an asynchronous
messaging service well suited to
aggregate event logs. Redis is an
inmemory keyvalue data store
most often used as a write behind
cache.

What I did to test this assertion was towrite a web service that combined allof these technologies. Then I wrote aload testing tool and some reportingutilities to put the service under theload and to measure and evaluatehow it performed. This is all opensource which you can find here.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 2 of 9 pp

https://github.com/gengstrand/clojurenewsfeed

Clojure is a Functional
Programming language which
means that it is not easy to
modify the state of objects
once they have been created.
One very important capability
any web service needs is its
ability to report its own
performance metrics if queried
to do so. On Java based
services, that is done via a
technology called JMX. This is

not easy for Clojure to do so I
wrote some Java code to do
this for the proposed news
feed web service. The support
project is where that code is
organized. Clojure and Java
interoperate very easily so it
is no big deal to call Java code
from Clojure. The support
project also wraps access to
the SolrJ API.

If you have ever used Facebook, thenyou should already be familiar withwhat a news feed is. This news feed isvery basic. Participants are linked toeach other through what is known asa social graph. A participant's activityis captured in his outbound feed.When a participant posts an activity,his friends (i.e. who he is directlyconnected to on his social graph)receive a copy of this activity in theirinbound feeds.

I wanted theoutboundactivity contentto be keywordsearchablewhich is whereSolr comes in.The solr subprojectcontains all theconfigurationfiles needed toindex theoutbound feed.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 3 of 9 pp

Theaffordabilityof opensource is goodnews forsmallbusiness. Thebad news isthat it is allabout up sellin the cloud.

The feed project iswhere all the Clojurecode, that implementsthe web service, isorganized. Here are themain components to thefeed service. The cacheredis, cassandra,messaging kafka, mysql,postgres, and searchname spaces all providebindings to theirrespective technologies.The rdbms name spaceprovides routing logic toeither mysql or postgresdepending on theconfiguration which isloaded with the settingsname space code. Thisservice does useconnection pooling tothe RDBMS which iscurrently set to 50maximum pool size. The

metrics name spaceprovides bindings to theJMX part of the supportproject. The corecomponent brings it alltogether with the abilityto either load or storedata from the underlyingtechnology. It also logsperformance data, bothto JMX and to the Kafkafeed topic. The handlername space maps HTTPrequests to the properfunctions in the corename space. For saves,I would use Clojure'ssupport forpolymorphism and themultimethod dispatchmechanism. For loads, Iwould use Clojure'ssupport for higher orderfunctions.
The news feedperformanceproject iswhere all theJava code, thatimplements aHadoop mapreduce job foraggregating theperformancedata from thenews feed webservice, isorganized.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 4 of 9 pp

The etl projectcontains a commandline utility that takesthe per minuteaggregated outputfrom the news feedperformance mapreduce job andpopulates a mysqldatabase ready foraccess via the opensource OLAP projectMondrian.
The load project contains the Clojure code thatimplements the load applications. This command linetool simulates a specified number of user sessionsthat create accounts, connect these accounts to eachother socially, then post outbound activity. This is alldone by calling the various end points to the webservice.
Once the code was written, it was time to set theenvironment up in order to perform the load test. Iused 5 m1.medium instances from EC2 and 1db.m1.medium instance from RDS. What got installedon the EC2 instances was Cassandra, Solr, Kafka,Redis, and Jetty.
Each service got their own server but I installedZooKeeper on the same instance as Kafka becauseKafka depends on ZooKeeper. Solr can be set up aseither single core or multicore. I chose multcore forits increased flexibility. The news feed service can runwith either MySql or PostGreSql but I choose RDSrunning PostGreSql for the load test.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 5 of 9 pp

The news feed webservice handles HTTPrequests with Compojurewhich is a routing libraryfor Ring which is a webapplications library thatcan be run to integratewith Jetty. You can embedJetty inside the JAR filewhich serves as the buildartifact for the project.That is how I chose tobuild and release thisexperiment.

I ended up using the defaultsfor most of the configurationsof these services. I alreadyexplained what you need to doto the Solr configuration.Cassandra is the other servicethat needs a tweak or two inits cassandra.yaml file. Therpc_address andlisten_address will need to beset to the external IP of thehost where Cassandra isrunning. Because the newsfeed service is using the CQLdriver and not the Hectorclient, you will also need to setstart_native_transport to true.
If you dodecide todeploy thisservice to thecloud, thenyou will needto extensivelychange thefeed/etc/config.clj filewhichcontains alltheconnectionsettings tothe variousservers.

The defaults in that file are all localhost which is fine if youare just exploring the service for yourself. See the variousREADME and docs/intro markdown files for much moredetailed information.
Now that the service is all set up and running, how do we test itscapacity at load? First thing to do is to run the load test applicationwhich is a command line tool, written in Clojure, that simulates aconcurrent number of sessions. Some percentage of those sessionsare just performing keyword search.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 6 of 9 pp

Configuration parameters for the
load test application include host,
port, participate batch size,
minimum number of friends,
maximum number of friends, how
many words for the subject line,
how many words in the activity
content, how many activity posts
per user, and how many searches
per user. I ran this test with 100
concurrent users and 10%
searches. The load application got
to run on its own m1.large EC 2
instance.

Now that the load test is running,how do we collect theperformance data? As mentionedpreviously, the service logs thisdata to Kafka which providescommand line tools to read thedata and redirect it to a text file.Once the test concluded, Itransferred that file to Hadoopwhere I ran the map reduce job,from the news feed performanceproject, which input that rawperformance information andoutput a text file which containsthe per minute collection ofperformance metrics(throughput, mode, and 95thpercentile) per entity (Participant,Friends, Inbound, Outbound) andactivity (load, store, post, andsearch).

The load test hascompleted andwe have a textfile containing allthe performancemetrics. How dowe access andanalyze thisdata? I used theetl Clojureproject (i.e.Extract,Transform, andLoad) to inputthe summarizedperformancemetrics file intoa MySqldatabase readyfor access by aMondrian OLAPcube.
You have to create the database and set up appropriate credentials.
Run the etl/etc/starschema.sql script to create the tables and stored
procedures that this etl program needs. Modify the etc/src/etc/core.clj
program to connect to the database with the proper credentials. See
the etl/doc/intro.md file for details on how to set up Mondrian with the
news feed performance cube data.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 7 of 9 pp

Now that the datahas been collectedand analyzed,what were thefindings?Performance atthe beginning wasnot so good. Thatwas because theRedis cache wascold. Once thecache warmed up,performance wasgreat. Near theend of the firsthour, performancereally bottomedout briefly.
I provisioned and ran the server side software on five EC 2instances but is that really five different servers? No. Cloudcomputing uses virtualization. I sshed to each 64 bit UbuntuLTS box but that is actually just the guest OS running alongside other guest OS images on some host server that I neversee. On the cloud, spikes in performance are more likely tobe attributed to increases in activity in the images thatreside along side yours on the real hardware. You canpurchase instances with provisioned guarantees ofinput/output processing per second but that costs more. Idid not do that for this test.
At first glance, it looks likeCassandra writes and Postgreswrites have about the samelatency. The steadystate numbersfor mode are 10 ms for Postgresand 8 ms for Cassandra. The 95thpercentiles are 50 ms for Postgresand 47 ms for Cassandra. Whatyou have to take into account isthat Cassandra was handling 14times more writes than Postgres.

Solr performance isvery consistent. It washandling 33 requestsper second with a verysteady 135 ms perrequest for the modeand 213 ms for the95th percentile.Compare that with the5X difference in theother data stores.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 8 of 9 pp

I suspect that the cause of the big spikecan be attributed to the very nature ofcloud computing itself.

The secondhour of theload test hadconsistentperformancemetrics so I willbase most ofmy findings onthatinformationalone.
Overall transaction throughput for posting outbound activity is a veryrespectable 58 to 83 transactions per second with a latency whosemode is 393 ms and whose 95th percentile is about 1 second. That isnot bad at all considering how this is with one web server which youcould easily scale out.
Does the Internet, cloud computing and open source really disruptentrepreneurism by providing lean startups with the capability to servelarge markets on a budget? Well, we have some mixed results here.The Internet is clearly disruptive in that consumers will gladly pay tobenefit from its networked effects. Open source is a big win for smallbusiness in that this 1400 lines of code that one guy wrote over theholidays could easily deliver nontrivial news feed capability at a scalethat the fortune 500 would gladly pay permium for merely a decadeago. Cloud computing; however, is a different story. The good news isthat it cost me only $10 to run this test. That's about as commodity asit gets. The bad news is that it is all about up sell in the cloud. Youwould need three times as many servers running on at least twoavailability zones for a credible High Availability story.Increase the RAMand CPUs andstart provisioningIOPs and you willquickly find thatthe cloud is notabout savingmoney, especiallyonce you haveachieved somesuccess and havea customer baseto protect.

Clojure News Feed Web Service Copyright © 2014 by Glenn Engstrand p 9 of 9 pp

